Atlas Computing Planning

Helge Meinhard / CERN-EP Atlas Software Workshop Berkeley, 11 May 2000

- We've been asked...
 - CERN review of LHC computing
 - LHCC
 - Atlas Executive Board/TC
- Important for ourselves...
 - Understand scope and size of project
 - Make sure it is in time
 - Prepare for sharing responsibility: Software Agreements, MOUs, ...

How?

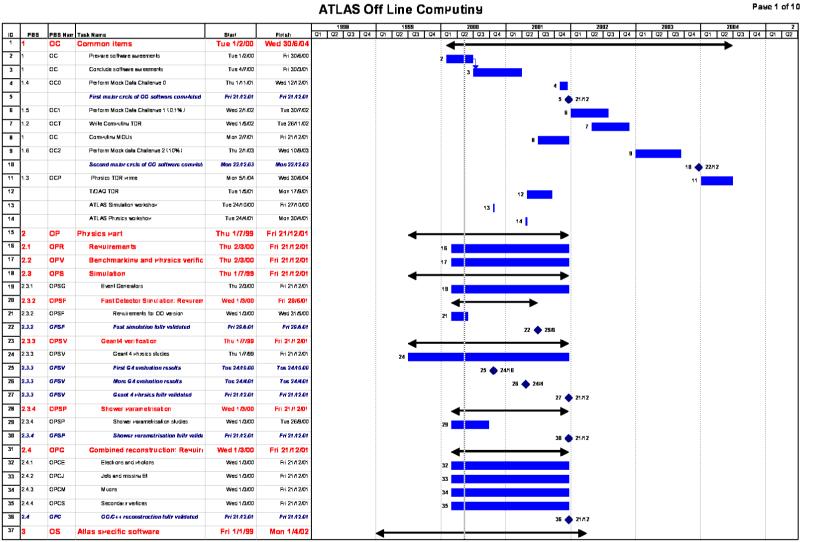
- Breakdown of the project "Atlas Computing" → Project Breakdown Structure (PBS)
- Work packages defined in Work Breakdown Structure (WBS)
- For all practical purposes of our project: PBS = WBS
- Tasks described in project schedule (MS Project file)

Project breakdown structure

- Mapping of (complex) reality onto (simple) tree structure
- Atlas preference: Tree organised according to lines of responsibility
- Basic layout:
 - 1. Common items
 - 2. Physics part
 - 3. Atlas-specific software

- 4. Software support
- 5. Infrastructure
- 6. Data production

PBS in detail


H. Meinhard 2000/05/03 Draft 6

PBS / WBS for Atlas Offline Computing

1 Commo	on items	OC		
1.1 Co-	-ordination and planning	OCC		
1.2 Cor	nputing TDR	OCT		
1.3 "Pl	nysics TDR prime"	OCP		
1.4 Mod	ck Data Challenge 0	0C0		
1.5 Mod	ck Data Challenge 1	OC1		
1.6 Moo	ck Data Challenge 2	OC2		
2 Physics part OP				
2.1 Red	quirements	OPR		
2.2 Ber	nchmarking and physics verification	OPV		
2.3 Sin	nulation	OPS		
	Event generators	OPSG		
	Fast detector simulation	OPSF		
2.3.3	Geant4 verification	OPSV		
2.3.4	Shower parametrisation	OPSP		
3 Atlas-specific software				
3.1 Cor	nmon items	OSC		
3.1.1	Architecture	OSCA		
3.1.2	Framework	OSCF		
	Data base	OSCB		
3.1.4		OSCE		
3.1.5 I	Detector description	OSCD		
	Calibration infrastructure	OSCC		
3.1.7 (Graphics	OSCG		
	Analysis tools	OSCT		
3.2 Inner Detector software 05				
3.2.1 (Common items	OSIC		
3.2.2	Simulation	OSIS		

3.2.3 Reconstruction	OSIR
3.2.3.1 Common items	OSIRC
3.2.3.1.1 Track class	OSIRCT
3.2.3.1.2 Clustering and 3D points	OSIRCC
3.2.3.1.3 External seeds	OSIRCS
3.2.3.1.4 Track finding	OSIRCP
3.2.3.1.5 Track extrapolation	OSIRCE
3.2.3.1.6 Track fitting	OSIRCF
3.2.3.1.7 TRT hit association	OSIRCA
3.2.3.1.8 Particle identification	OSIRCI
3.2.3.2 iPatRec	OSIRI
3.2.3.3 xKalman	OSIRX
3.2.3.4 Pixlrec	OSIRP
3.2.3.5 xHourec	OSIRH
3.2.3.6 ASTRA	OSIRA
3.2.3.7 Overall strategy 3.2.3.8 Vertex fitting	OSIRO
3.2.3.8 Vertex fitting	OSIRV
3.2.3.8.1 Vertex class	SIRVV
3.2.3.8.2 Multitrack vertex	SIRVM
3.2.3.8.3 Primary vertex	OSIRVP
3.2.3.8.4 Photon conversion	OSIRVC
3.2.3.8.5 KOs and Lambda vertex	OSIRVK
3.2.3.8.6 Hadronic interaction	OSIRVH
3.2.3.9 Kink finding	OSIRK
3.2.4 Data base interface	OSID
3.2.5 Test beams	OSIB
3.2.6 Alignment and calibration	OSIA
3.2.6.1 Pixl	OSIAP
3.2.6.2 SCT	OSIAS
3.2.6.3 TRT	OSIAT
3.3 Liquid Argon Calorimeter softwa	are OSL
3.3.1 Common items	OSLC
3.3.2 Simulation	OSLS
3.3.3 Reconstruction	OSLR
3.3.3.1 Cell and Cluster classes	OSLRC

Gantt chart (1/10)

Last update: Thu 11*151*00 00:40

Task report (1/27)

1 1 OC Common items Tue 1/2/00 Wed 30/6/04						
2 1 OC Prepare software agreements	Tue 1/2/00	Fri 30/6/00				
HD Succassor Name Type Lag 3 Conclude software agreements FS 0 days						
<u>Notes</u> Discuss and decide on general policy, where Software Agreements are applicable etc; provide standard	blueprint text					
3 1 OC Conclude software agreements Tue 47/00 Fri 30/301						
ID Pradacassor Nama Typa Lag						
2 Prapare coftware agreements FS 0 days						
Notes Discuss and conclude the various Software Agreements to be put in place						
4 1.4 OCO Perform Mock Data Challenge 0		Ned 12/12/01				
<u>Notes</u> The 'Zero' Data Challenge comprises a 'continuity' test through the software chain, including trigger sin	ulation. The 'Zero' implies a	rakativaly small number of avants on 20k7+lation similar Of				
course the challenge includes read/write of data to database.		Battery Smarthanner of Evenic, e.g. 201 21081, G. Sinnial, Or				
5 First major cycle of OO software completed	Fri 21/12/01	Fri 21/12/01				
6 1.5 OC1 Perform Mock Data Challenge 1 (0.1%)	Wed 2/1/02	Tue 30/7/02				
MDC1 is thought of as 0.1% of a year's raw data. (i.e. about a 1TB) The MDC1 should of course be based on G4 simulation, and some						
(but not all!) PTDR plots should be re-checked. The hope would be that a 'signal' buried in the MDC 1 data can be found						
in the analysis. Unlikely to have all 'bells and whistles' of calibration etc.						
but some claibration software machinery should be exercised. Hardware resources for MDC1 are not likely to be a problem. Analysis will surely not enjoy full-blown GF	D features					
7 1.2 OCT Write Computing TDR	Wed 1/5/02	Tue 26/11/02				
<u>Notes</u> Scope of Computing TDR (CTDR) covers both software and hardware. I suppose idea is that it TDR sh	ould demonstrate sufficient o	corress and rate of progress that Funding Agencies will feel				
happy to see major computing expenditure (hardware and more software expertise) startduring 2003.	and dampionize outriciting p					
The precise timing of the CTDR is at least partyl 'political'. US Funding Agencies have suggested wanting it not later than 2002. CMS plan theirs						
for early 2002.						
8 1 OC Computing MOUs	Mon 2/7/01	Fri 21/12/01				
Notes It is unclear whether the Computting MOUs will require the Computing TOD: for the purposes of this play	nning and in ling with the sur-	ant state of discussion in the CEDM source of LHC somewing				
It is unclear whether the Computting MOUs will require the Computing TDR; for the purposes of this pla we assume that the MOUs will precede the Computing TDR. However, this is still being discussed by the						
interim MOUs to precede the TDR may be considered.						

Basic assumptions

- Near-term planning (until end 2001) more precise
- Major cycles of effort one until end 2001, next one until ~ end 2003
- 'Driving' events are under common items

 Mock data challenges
 - TDRs: Trigger/DAQ, Computing, Readiness
 - Software agreements and MOUs

History and current status

- Effort started in February 2000
- Contributions by all CSG parties involved, and others
- Two versions circulated and discussed in CSG, present one in EB and SW workshop
- Schedule (and PBS) are snapshot of ongoing work
 - ~ 150 items in PBS, ~ 350 items in schedule
 - Missing items
 - Inconsistencies

To be done (1)

- Understand and enter dependencies
- Understand and enter resources
- More homogeneous handling of sub-projects
 - Level of detail
 - Tasks vs milestones (LHCC, EB/TC, CSG, subproject)
 - Sub-project schedules to be maintained separately?

To be done (2)

Simulation

- Mechanisms for follow-up and modification
- More and better options for presentation
 - Notes

- Summary of tasks and milestones
- Integration with Atlas Technical Coordination

Software agreements

- Mechanism to ensure that all parts of the software are written, maintained etc. in time
- Between Atlas and (group of) institute(s)
- Does not affect openness
 - Sources in central repository
 - Contributions always welcome
- Policy document being discussed in NCB
- Aim: first Software Agreement concluded by October 2000 (next RRB)

Conclusions

- Planning process potentially very useful and beneficial
- Requires a lot of work
- Help improve and follow up

http://cern.ch/Atlas/GROUPS/SOFTWARE/OO/planning