Muon reconstruction at Level-2

Rome muon trigger group & Boston Muon Consortium

- Level-2 muon trigger (µFAST + bmc_trig)
 - stand-alone μ trigger using RPC + MDT
 - Level-2 combined muon + track trigger
 - fast algorithm combines tracks from SCT trigger and μFAST
 - Present performance + rates calculation as in HLT TP

Stand-alone Level-2 muon trigger

- Two algorithms: mFAST (Rome $|\eta|<1$.) and BMC_TRIG (Boston $|\eta|<2$).
- Two algorithms are similar
- μ FAST reconstruction done in three steps:

- pattern recognition using RPC to define roads in the MDT stations; a contiguity algorithm removes background hits from muon track.

- track-segment fit; a straight-line track is fitted using selected hits in each muon station. The drift-time measurement is used with a linear r-t relation. The intercept of this trajectory with the plane in the middle of the muon station defines a "superpoint". This procedure provides one superpoint per muon station and the related sagitta.

μ FAST and bmc_trig

- momentum reconstruction; a linear function relates observed sagitta with the muon momentum at vertex. This relation is described by a LUT where the two parameters are given as a function of the eta and phi, for a given muon charge.

- The output of the algorithm is the muon pT at vertex, the η and ϕ coordinates and the track direction at the Inner MDT station.
- The main differences of the BMC_TRIG algorithm are:

- no contiguity algorithm is applied; the best track-segment is selected in each MDT station after the local fit procedure;

- two superpoints are defined in each MDT station, one per multilayer;

- the radius of curvature of the track is studied at the place of the sagitta

Level-2 performance

• p_T resolution:

- simulated (nominal) background not seen to degrade performance (some effect at hi-lumi, high- p_T for 10x background)
 - at low- p_T , resolution is close to that from offline

Level-2 performance

• Efficiency:

 high statistics at low-p_T provide precise rate estimate, since rate is dominated by low-p_T tail

Combined algorithm

• Combine features from Level-2 muon algorithm (μ FAST - $|\eta|$ <1), with those form SCT algorithm:

- use simple linear extrapolations + analytic corrections in η and z to make matches

- reject K/ π decays using p_T matching

- improve threshold sharpness using SCT - e.g. consider efficiency curve:

Combined performance

- Efficiency
 - substantial K/ π rejection
 - good prompt μ efficiency
 - algorithm is fast (23 μ s/RoI)

Rates at Level-2, kHz

- low-p_T, 6 GeV

	Level-1 (η <1)	μ FAST (η <1)	bmc_trig (1< η <2)	combined (η <1)
K/ π decays	7.9	3.1	1.8	0.98
b decays	1.7	1.0	0.9	0.73
c decays	1.0	0.5	0.5	0.37
Total	10.6	4.6	3.3	2.08
-high-p _T , 20	GeV			
K/π decays	1.1 ^a	0.06	0.07	-
b decays	0.8	0.09	0.11	-
c decays	0.4	0.04	0.04	-
W decays	0.06	0.04	0.05	-
Total	2.4	0.23	0.27	

Summary

a. Studies still in progress.

- Algorithms now exist for stand-alone muon triggers in almost all η range, and for $|\eta| < 1$ for combined reconstruction
- Stand-alone trigger reduces rates by ~2 at low-pT, and ~10 at high-pT.
- Fast combined reconstruction suppresses K/ π decays by further factor ~2