Software Process in the

ATLAS Back-end DAQ

Autumn Trigger DAQ Workshop Marseille, October 1997

General Approach

•project phases

collect requirements (ESA-PSS05 style URD produced) identify common issues (e.g. data storage, graphics, communication etc.) perform pre-design investigations into candidate technologies/techniques develop high-level design detailed-design, implementation and unit testing integration deployment

•principles

rapidly evolving software market (e.g. Java, UML, UNIX/WNT) adhere to relevant standards (e.g. OMG, ODMG) use commercial software wherever possible rely on other projects for specific areas (e.g. RD45 persistence) concentrate development effort on ATLAS-DAQ specific items use common solutions across all components of the backend requirements, analysis & design most important aspects to get to 2005

BackEnd components

Run control	controls DAQ configuration and data taking operations			
Configuration databases	define all aspects of the DAQ configuration			
Message reporting system	report/capture of information messages			
Information service	general purpose information exchange			
Process manager	basic job control of programs			
Status display	shows current status of data taking to the shift operator			
Partition/resource manager	allows concurrent data taking activity			
Test manager	bank of functionality tests for DAQ components			
Diagnostics package	uses tests held in the test manager to diagnose problems			
Run bookkeeper	electronic tape log book			
Monitoring & event display ^a	access to sampled data for analysis and quality checking			
Data and event viewing ^a	facility for viewing event data and sets of histograms			
a. online aspects only (in conjunction with	i data-flow group)			

BackEnd DAQ status: October'97

component	require- ments	design	imple- ment.	integra- tion	institutes
Run control					CERN, IN2P3- Marseille, Sheffield
Configuration databases					CERN, PNPI
Message reporting system					CERN, IAP-Bucharest, PNPI
Information service					CERN, IAP-Bucharest, PNPI
Process manager					IN2P3-Marseille
Status display					IAP-Bucharest, IN2P3-Marseille
Partition/resource manager					JINR-Dubna
Test manager					NIKHEF
Diagnostics package					
Run bookkeeper					LIP
Monitoring & event display ^a					
Data and event viewing ^a					

a. online aspects only (in conjunction with data-flow group)

ATLAS Back-end DAQ

adopted technologies

• StP/OMT & Booch	OO method and CASE tool
• FrameMaker/WebMaker	documentation system
 Objectivity ODBMS 	ODBMS for long-term storage
• Tools.h++	general C++ utilities and simple persistence
• Corba/ILU	inter-process communication
• ACE	portable C++ interface to operating system
• Java/Motif	graphics for status display and editors
• X-Designer	cross-platform GUI development and testing
• CHSM	finite state machines in C++
• SRT	configuration management

Back-end DAQ: Definition of requirements

•Deliverables

To produce a user requirements document Define a work-plan for the next phase

•Organisation

Organised as a working group (19: DAQ + detector reps.) Used ESA-PSS05 Framemaker template from ECP/IPT group

•Duration

4 months (Jan-Apr'96)

•Review

URD announced at Trigger/DAQ meeting of March 1996 ATLAS week

Comments (very few) received and incorporated in the URD

We also produced a summary document: no specific requirements but shorter and easier to read

Visited LEP experiment sites to discuss back-end issues and compare the requirements specified in the URD against working systems.

URD divided software into components. Workplan ordered components according to priority.

Back-end DAQ: Pre-design investigations

•Deliverables

Evaluation note of technologies thought to be capable of satisfying the URD

•Organisation

Details of each evaluation defined in work-plan

Organised as small working groups (max. 4 people) - one for each technology Used custom-made Framemaker technical note template

•Duration

5 months (Jun-Oct'96)

•Review

Every evaluation technical note was reviewed in the back-end DAQ meetings Based on the results a single technology was selected for each area (except GUIs: Motif & Java)

Back-end DAQ: High-level design

•Deliverables

high-level design for the component with a document containing:

- a short textual overview of the design
- descriptions of the interfaces to other components, sub-systems and users

- diagrams taken from the OMT/Booch methods, produced with StP, describing the various aspects of the design

•Organisation

Initially 5 small groups (one per "core" component) Groups concentrated by institute (to avoid excessive travel) OMT/StP training organised on CERN site StP repository set-up (at CERN)

•Duration

```
5 months (Oct'96-Apr'97)
```

•Review

Every high-level design document was reviewed in back-end DAQ meetings Several revisions of the documents were made as the designs evolved Dropped Partition Manager component (not enough information) Discovered Information Service (general on-line information exchange)

Back-end DAQ: Detailed design and implementation

•Deliverables

Unit-tested implementations of the "core" components according to the high-level design

User & Programmer documentation

•Organisation

Organised as small working groups (max. 5 people) - one for each component Generally the same individuals have followed a component through design and implementation

Used custom-made Framemaker technical note template

Use StP code generation where possible (e.g. CHSM, OKS, Objectivity)

•Duration

on going (started Apr'97). Expect to be ready for integration with data-flow at Xmas'97.

•Review

Code reviews will be made (partially done for MRS, IS and run-control)

Back-end DAQ: testing

•Organisation

Unit-tests based on use-cases identified in the high-level design documents Attempts to produce test-plans at the high-level design phase met with limited success

Kept with the implementation in the SRT repository (/tests sub-directory)

•Tools

Purify for memory leaks (Insure++ as well but less liked) StateMate (for run-control component finite state machine simulation) CHSM debug tools (for finite state machines) Logiscope (code coverage & metrics)

•Future

StP/T - test-case generator tool for APIs Coding rule checker (off-line experience)

Summary

•Phases

Dividing the project into several well defined phases has helped pace and organise our work

Each phase has an obvious deliverable (i.e. document or code)

In general, everyone know in which phase their current is defined

The requirements phase helped enormously in defining the scope and boundaries of the project and showed differences of point of views

•Organisation

Small is beautiful.

Localised development greatly eases communication

Component structure has helped to focus work

•Tools and Methods

Adoption of the OMT method was more important that the StP CASE tool Method gives a common language between groups and individuals which helps dispel misunderstandings

•Future

We have not covered all the phases of the cycle: further testing, integration, deployment, upgrades.

SW Dev. Env. history and status

•ATLAS SW Dev. Env. User Requirements Document

defined by an ATLAS wide group including Trigger & DAQ included in ATLAS Computing Technical Proposal Referenced from the ATLAS Software Process possible LHC-wide project (LCB)

•Implemented in ATLAS DAQ Prototype:

applying simplified version of ASP URD and technical note templates OMT method & StP commercial case tool StP customisation: code/doc generators Sniff, Insure, Logiscope commercial coding/testing tools Software Release Tools (SRT) for configuration management

Components and phases

Analysis and design		Delivery					
methods	CASE tools	packaging	distribution				
Implementation and	d Integration	Verification and Validation					
general purpose libraries build-tools (make) style-guides	languages compilers interpreters debuggers	tracing language verifier GUI testers performance analyser	API test-case generator static analyser code coverage run-time error detection				
Configuration Management							
defect tracking	_		repository				
Document preparation system							
Human communication tools							
Training							
Project Management							

Training

• Need training for all developers

~25 DAQ people followed OMT/StP (we introduced the course at CERN) ~10 C++

- 5 Objectivity
- Recognise the need for a defined training plan

contributing to the definition of the new CERN training program

- Training must cover **all** tools and techniques used insist on **design** not just **programming**
- Make as much use of online tools as possible

FAQs, news-groups, discussion lists, web tutorials, video conferencing