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Back-end DAQ software process
Bob Jones (Robert.Jones@cern.ch)

•Introduction
what is the back-end DAQ?
what do they know about software process anyway?
is it the same as the Atlas Software Process?

•Process Overview
organisation
phases and deliverables
inspections

•Summary
status
things we might like to improve
some do’s and don’t s
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ATLAS Back-End DAQ
software for configuring, controlling and monitoring the DAQ
excludes management/processing/transportation of physics data

The back-end talks to all other online systems
It is the "glue" of the online
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Back-End integration in ATLAS online
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Is it the same as the Atlas Software Process?
•What do they know about software process anyway?

We are not Gurus -just concerned developers like you
Based on what we could find in the text books and could apply
Seen as abest effort approach -not perfect but will do for now

•Many similarities with ASP
domains <=> components
use same techniques (e.g. OMT) and tools (e.g. StP, SRT)
basic phases and organisation

•A few differences
advantage of being a smaller, more closely integrated community (8 institutes,
~15 individuals)
not formally described in a document -just web pages
inspections are more "human"
more detail on testing procedures
so far all Back-end software has followed the basic process

•We are providing input to the ASP
a sort ofASP-Lite
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Back-end Software Process
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Back-End components
Run control controls DAQ configuration and data taking operations

Configuration databases define all aspects of the DAQ configuration

Message reporting system report/capture of information messages

Information service general purpose information exchange

Process manager basic job control of programs

Partition/resource manager allows concurrent data taking activity

Status display shows current status of data taking to the shift operator

Online bookkeeper electronic tape log book

Test manager bank of functionality tests for DAQ components

Diagnostics package uses tests held in the test manager to diagnose problems

Event dump access to sampled data for analysis and quality checking

co
re

TD
AQ

 &
de

te
ct

or



7

Bob Jones CERN EP/atd ATLAS Feb’99

Organisation
•Work organised around components

small group dedicated to each component (upto 4 developers)
one co-ordinator for each component
prefer one institute per component -clear boundaries of responsibility
most developers follow a component all the way through its lifecycle
look for commonality between components -don’t duplicate functionality

•Components developed according to agreed priority
started with core components (e.g. run control and config. databases)
now working on TDAQ components (e.g. Online Book-keeper)

•Component independent parts
Software management (i.e. use of SRT, CVS, AFS etc.)
Use of external software (Corba/ILU, Rogue Wave Tools.h++, CmdLine,
CHSM, ACE) -one developer responsible for each package
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Back-End components
installation and dependencies
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Inspections
•Purpose

Improve the quality of components by assisting developers to recognise and fix
faults at the earliest possible point in the development cycle

•General organisation
Based on Tom Gilb's Software Inspection method

Authors submit software/document to a small group of peers who review it and
produce a list of comments which are given back to the authors.

Moderator - person responsible for organising the review and collecting com-
ments
Producer(s) - authors of the software to be reviewed
Reviewers - peers directly concerned by and aware of the work

Reviewers are aided by check-lists covering issues and criteria for completeness
and correctness.

The focus of the inspection is on identifying problems, not resolving them
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Inspection insights
•Prefer "real" to "virtual" meetings

improves team atmosphere and helps brainstorming
good way of training new-comers & extending knowledge of developers
best to start people as reviewers before they become authors

•Inspections are a lot of work
3 to 4 peers work best
Typically need 1 kick-off, 1 logging and 1 follow-up meeting
Split large deliverables and assign one reviewer to each part
collect metrics and feedback on inspection process

•Code inspections
Authors must do a lot of preparation:
- documentation
- coding rules and CodeCheck tool from Spider project
- configuration management (SRT)
- testing tools (Logiscope, Insure++, Purify)

A lot of work but worth it: found faults in code and documents
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Templates and guidelines used
•doc. templates developed within the project

generic technical notehttp://atddoc.cern.ch/Atlas/DaqSoft/sde/TechNote.fm

test planhttp://atddoc.cern.ch/Atlas/DaqSoft/sde/TestPlanOutline.fm

test reporthttp://atddoc.cern.ch/Atlas/DaqSoft/sde/TestReportOutline.fm

•doc. templates taken from the IT/IPT group
user requirementshttp://www.cern.ch/CERN/Divisions/ECP/IPT/DocSys/PSS05/

users guidehttp://framemaker.cern.ch/GuideTemplates/)

•check-lists and guidelines
brief requirements, design and general documentation check-lists
Spider C++ coding standards
Short, easy-to-read ideas for design and testing by Guru’s on the web
Simple "how-to" instructions for most commonly used tools (e.g. SRT)
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Summary
• Back-end software

covers 11 components (~150,000 lines C++):
 - 6 tested and integrated
 - 2 implemented
 - 2 being designed
 - one left(any takers?)
now concentrating on regular incremental releases of the software

• Back-end DAQ software process
certainly not perfect -but perhaps the best we can do now
improving all the time:
- put more order in the detailed design/implementation phase
- improve software distribution and management tools
- simpler doc. templates
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Building Software Releases
•Each one should be better than the last

incremental/evolutionary
implies sufficient unit testing -use SRT’smake check target
One per month -coincides with Back-end meetings
Status of last release and contents of the next are discussed in the meeting

•More platforms == more work
implies every developer has access to every platform
keep the list of supported platforms as small as possible
should be rationalised across sub-system(s) / online / atlas

•Software librarian != developer
He/She is not there to fix faults in the software
Have a web page to show log of build for each component

Building a release is an important milestone but represents a lot of work for everybody
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Release Information
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Some do’s and don’t s
•Do’s

do start gently -can’t go from chaos to Nirvana in one step
do keep it simple and stick with it(i.e don’t abandon it half way through)
do inspect requirements, design, code, users guide
do provide templates, checklists and examples for every deliverable
do get a non-author to perform component testing

•Don’t s
don’t  burden developers unnecessarily(e.g. paperwork)
don’t  ask developers to produce a deliverable unless you it will be used
don’t  ask developers to do something which has not been tried before
don’t underestimate time and effort required for software management, integra-
tion and testing
don’t  do distributed development if you can avoid it
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