
1

Bob Jones CERN EP/atd ATLAS Feb’99

Back-end DAQ software process
Bob Jones (Robert.Jones@cern.ch)

•Introduction
what is the back-end DAQ?
what do they know about software process anyway?
is it the same as the Atlas Software Process?

•Process Overview
organisation
phases and deliverables
inspections

•Summary
status
things we might like to improve
some do’s and don’t s

2

Bob Jones CERN EP/atd ATLAS Feb’99

ATLAS Back-End DAQ
software for configuring, controlling and monitoring the DAQ
excludes management/processing/transportation of physics data

The back-end talks to all other online systems
It is the "glue" of the online

Switching Matrix

Data Storage

Processor
Farm

T
R
G

L2 L3
R/O BuffersL

I
N
K

L
I
N
K

Read-Out Drivers

RoI

Lvl 2

C
P
U

Detectors

S
u
p
e
r
v
i
s
o
r

Operator
workstations

Processors running
Back-End (and other) software

3

Bob Jones CERN EP/atd ATLAS Feb’99

Back-End integration in ATLAS online

Back-End

LVL2

trig params

system params
executable code

test data
response to ctrl cmds

error msgs
status info

monitoring info
logging info

constants

ctrl cmds

 DAQ
response to ctrl cmds

error msgs
status info

monitoring info
logging info

ctrl cmds

DCS

response to ctrl cmds
error msgs
status info
monitoring info
logging info

ctrl cmds

Event
response to ctrl cmds
error msgs
status info
monitoring info
logging info

control cmds

Event
Builder

ctrl cmds system params

test data

system params

test data

system params
test data

system params

test data

response to ctrl cmds

error msgs
status info

monitoring info
logging info

LVL1

response to ctrl cmds
error msgs
status info
monitoring info
logging info

ctrl cmds

system params
test data

Detector

response to ctrl cmds
error msgs
status info
monitoring info
logging info

ctrl cmds

system params
test data

Filter

4

Bob Jones CERN EP/atd ATLAS Feb’99

Is it the same as the Atlas Software Process?
•What do they know about software process anyway?

We are not Gurus -just concerned developers like you
Based on what we could find in the text books and could apply
Seen as abest effort approach -not perfect but will do for now

•Many similarities with ASP
domains <=> components
use same techniques (e.g. OMT) and tools (e.g. StP, SRT)
basic phases and organisation

•A few differences
advantage of being a smaller, more closely integrated community (8 institutes,
~15 individuals)
not formally described in a document -just web pages
inspections are more "human"
more detail on testing procedures
so far all Back-end software has followed the basic process

•We are providing input to the ASP
a sort ofASP-Lite

5

Bob Jones CERN EP/atd ATLAS Feb’99

Back-end Software Process

collect
requirements

Pre-design

High-level

detailed-design

testing &

investigations

design

& implement.

integration

identify needs & common issues
define priorities and work-plan

perform pre-design investigations into
candidate technologies/techniques

develop high-level design

refine design
implement code

unit test components
integrate with dataflow

requirements

evaluation

high-level

test programs

report(s)

design

code

implement. note

users guide

test plan

test results

Phases Reviewed Deliverables

6

Bob Jones CERN EP/atd ATLAS Feb’99

Back-End components
Run control controls DAQ configuration and data taking operations

Configuration databases define all aspects of the DAQ configuration

Message reporting system report/capture of information messages

Information service general purpose information exchange

Process manager basic job control of programs

Partition/resource manager allows concurrent data taking activity

Status display shows current status of data taking to the shift operator

Online bookkeeper electronic tape log book

Test manager bank of functionality tests for DAQ components

Diagnostics package uses tests held in the test manager to diagnose problems

Event dump access to sampled data for analysis and quality checking

co
re

TD
AQ

 &
de

te
ct

or

7

Bob Jones CERN EP/atd ATLAS Feb’99

Organisation
•Work organised around components

small group dedicated to each component (upto 4 developers)
one co-ordinator for each component
prefer one institute per component -clear boundaries of responsibility
most developers follow a component all the way through its lifecycle
look for commonality between components -don’t duplicate functionality

•Components developed according to agreed priority
started with core components (e.g. run control and config. databases)
now working on TDAQ components (e.g. Online Book-keeper)

•Component independent parts
Software management (i.e. use of SRT, CVS, AFS etc.)
Use of external software (Corba/ILU, Rogue Wave Tools.h++, CmdLine,
CHSM, ACE) -one developer responsible for each package

8

Bob Jones CERN EP/atd ATLAS Feb’99

Back-End components
installation and dependencies

Tools.h++ ILUObjy

OKS

Data Access
Libraries

IPC

Information
Service

Message Reporting
System

Run Control

External
Packages

Non-core components
not shown

CHSM

Process Manager

Principal

Supported
Platforms (Jan’99)

Solaris
LynxOS
WNT
HPUX

9

Bob Jones CERN EP/atd ATLAS Feb’99

Inspections
•Purpose

Improve the quality of components by assisting developers to recognise and fix
faults at the earliest possible point in the development cycle

•General organisation
Based on Tom Gilb's Software Inspection method

Authors submit software/document to a small group of peers who review it and
produce a list of comments which are given back to the authors.

Moderator - person responsible for organising the review and collecting com-
ments
Producer(s) - authors of the software to be reviewed
Reviewers - peers directly concerned by and aware of the work

Reviewers are aided by check-lists covering issues and criteria for completeness
and correctness.

The focus of the inspection is on identifying problems, not resolving them

10

Bob Jones CERN EP/atd ATLAS Feb’99

Inspection insights
•Prefer "real" to "virtual" meetings

improves team atmosphere and helps brainstorming
good way of training new-comers & extending knowledge of developers
best to start people as reviewers before they become authors

•Inspections are a lot of work
3 to 4 peers work best
Typically need 1 kick-off, 1 logging and 1 follow-up meeting
Split large deliverables and assign one reviewer to each part
collect metrics and feedback on inspection process

•Code inspections
Authors must do a lot of preparation:
- documentation
- coding rules and CodeCheck tool from Spider project
- configuration management (SRT)
- testing tools (Logiscope, Insure++, Purify)

A lot of work but worth it: found faults in code and documents

11

Bob Jones CERN EP/atd ATLAS Feb’99

Templates and guidelines used
•doc. templates developed within the project

generic technical notehttp://atddoc.cern.ch/Atlas/DaqSoft/sde/TechNote.fm

test planhttp://atddoc.cern.ch/Atlas/DaqSoft/sde/TestPlanOutline.fm

test reporthttp://atddoc.cern.ch/Atlas/DaqSoft/sde/TestReportOutline.fm

•doc. templates taken from the IT/IPT group
user requirementshttp://www.cern.ch/CERN/Divisions/ECP/IPT/DocSys/PSS05/

users guidehttp://framemaker.cern.ch/GuideTemplates/)

•check-lists and guidelines
brief requirements, design and general documentation check-lists
Spider C++ coding standards
Short, easy-to-read ideas for design and testing by Guru’s on the web
Simple "how-to" instructions for most commonly used tools (e.g. SRT)

12

Bob Jones CERN EP/atd ATLAS Feb’99

Summary
• Back-end software

covers 11 components (~150,000 lines C++):
 - 6 tested and integrated
 - 2 implemented
 - 2 being designed
 - one left(any takers?)
now concentrating on regular incremental releases of the software

• Back-end DAQ software process
certainly not perfect -but perhaps the best we can do now
improving all the time:
- put more order in the detailed design/implementation phase
- improve software distribution and management tools
- simpler doc. templates

13

Bob Jones CERN EP/atd ATLAS Feb’99

Building Software Releases
•Each one should be better than the last

incremental/evolutionary
implies sufficient unit testing -use SRT’smake check target
One per month -coincides with Back-end meetings
Status of last release and contents of the next are discussed in the meeting

•More platforms == more work
implies every developer has access to every platform
keep the list of supported platforms as small as possible
should be rationalised across sub-system(s) / online / atlas

•Software librarian != developer
He/She is not there to fix faults in the software
Have a web page to show log of build for each component

Building a release is an important milestone but represents a lot of work for everybody

14

Bob Jones CERN EP/atd ATLAS Feb’99

Release Information

15

Bob Jones CERN EP/atd ATLAS Feb’99

Some do’s and don’t s
•Do’s

do start gently -can’t go from chaos to Nirvana in one step
do keep it simple and stick with it(i.e don’t abandon it half way through)
do inspect requirements, design, code, users guide
do provide templates, checklists and examples for every deliverable
do get a non-author to perform component testing

•Don’t s
don’t burden developers unnecessarily(e.g. paperwork)
don’t ask developers to produce a deliverable unless you it will be used
don’t ask developers to do something which has not been tried before
don’t underestimate time and effort required for software management, integra-
tion and testing
don’t do distributed development if you can avoid it

	Back-end DAQ software process
	• Introduction
	what is the back-end DAQ?
	what do they know about software process anyway?
	is it the same as the Atlas Software Process?

	• Process Overview
	organisation
	phases and deliverables
	inspections

	• Summary
	status
	things we might like to improve
	some do’s and don’t s

	Inspections
	• Purpose
	Improve the quality of components by assisting developers to recognise and fix faults at the earl...

	• General organisation
	Based on Tom Gilb's Software Inspection method
	Authors submit software/document to a small group of peers who review it and produce a list of co...
	Moderator - person responsible for organising the review and collecting comments
	Producer(s) - authors of the software to be reviewed
	Reviewers - peers directly concerned by and aware of the work
	Reviewers are aided by check-lists covering issues and criteria for completeness and correctness.
	The focus of the inspection is on identifying problems, not resolving them

	Inspection insights
	• Prefer "real" to "virtual" meetings
	improves team atmosphere and helps brainstorming
	good way of training new-comers & extending knowledge of developers
	best to start people as reviewers before they become authors

	• Inspections are a lot of work
	3 to 4 peers work best
	Typically need 1 kick-off, 1 logging and 1 follow-up meeting
	Split large deliverables and assign one reviewer to each part
	collect metrics and feedback on inspection process

	• Code inspections
	Authors must do a lot of preparation:
	- documentation
	- coding rules and CodeCheck tool from Spider project
	- configuration management (SRT)
	- testing tools (Logiscope, Insure++, Purify)

	A lot of work but worth it: found faults in code and documents

	Is it the same as the Atlas Software Process?
	• What do they know about software process anyway?
	We are not Gurus - just concerned developers like you
	Based on what we could find in the text books and could apply
	Seen as a best effort approach - not perfect but will do for now

	• Many similarities with ASP
	domains <=> components
	use same techniques (e.g. OMT) and tools (e.g. StP, SRT)
	basic phases and organisation

	• A few differences
	advantage of being a smaller, more closely integrated community (8 institutes, ~15 individuals)
	not formally described in a document - just web pages
	inspections are more "human"
	more detail on testing procedures
	so far all Back-end software has followed the basic process

	• We are providing input to the ASP
	a sort of ASP-Lite

	Organisation
	• Work organised around components
	small group dedicated to each component (upto 4 developers)
	one co-ordinator for each component
	prefer one institute per component - clear boundaries of responsibility
	most developers follow a component all the way through its lifecycle
	look for commonality between components - don’t duplicate functionality

	• Components developed according to agreed priority
	started with core components (e.g. run control and config. databases)
	now working on TDAQ components (e.g. Online Book-keeper)

	• Component independent parts
	Software management (i.e. use of SRT, CVS, AFS etc.)
	Use of external software (Corba/ILU, Rogue Wave Tools.h++, CmdLine, CHSM, ACE) - one developer re...

	Some do’s and don’t s
	• Do’s
	do start gently - can’t go from chaos to Nirvana in one step
	do keep it simple and stick with it (i.e don’t abandon it half way through)
	do inspect requirements, design, code, users guide
	do provide templates, checklists and examples for every deliverable
	do get a non-author to perform component testing

	• Don’t s
	don’t burden developers unnecessarily (e.g. paperwork)
	don’t ask developers to produce a deliverable unless you it will be used
	don’t ask developers to do something which has not been tried before
	don’t underestimate time and effort required for software management, integration and testing
	don’t do distributed development if you can avoid it

	ATLAS Back-End DAQ
	software for configuring, controlling and monitoring the DAQ
	excludes management/processing/transportation of physics data

	Back-End components
	controls DAQ configuration and data taking operations
	Configuration databases
	define all aspects of the DAQ configuration

	Message reporting system
	report/capture of information messages

	Information service
	general purpose information exchange

	Process manager
	basic job control of programs

	Partition/resource manager
	allows concurrent data taking activity

	Status display
	shows current status of data taking to the shift operator

	Online bookkeeper
	electronic tape log book

	Test manager
	bank of functionality tests for DAQ components

	Diagnostics package
	uses tests held in the test manager to diagnose problems

	Event dump
	access to sampled data for analysis and quality checking

	Templates and guidelines used
	• doc. templates developed within the project
	generic technical note http://atddoc.cern.ch/Atlas/DaqSoft/sde/TechNote.fm
	test plan http://atddoc.cern.ch/Atlas/DaqSoft/sde/TestPlanOutline.fm
	test report http://atddoc.cern.ch/Atlas/DaqSoft/sde/TestReportOutline.fm

	• doc. templates taken from the IT/IPT group
	user requirements http://www.cern.ch/CERN/Divisions/ECP/IPT/DocSys/PSS05/
	users guide http://framemaker.cern.ch/GuideTemplates/)

	• check-lists and guidelines
	brief requirements, design and general documentation check-lists
	Spider C++ coding standards
	Short, easy-to-read ideas for design and testing by Guru’s on the web
	Simple "how-to" instructions for most commonly used tools (e.g. SRT)

	Back-end Software Process
	Back-End integration in ATLAS online
	Building Software Releases
	• Each one should be better than the last
	incremental/evolutionary
	implies sufficient unit testing - use SRT’s make check target
	One per month - coincides with Back-end meetings
	Status of last release and contents of the next are discussed in the meeting

	• More platforms == more work
	implies every developer has access to every platform
	keep the list of supported platforms as small as possible
	should be rationalised across sub-system(s) / online / atlas

	• Software librarian != developer
	He/She is not there to fix faults in the software
	Have a web page to show log of build for each component

	Building a release is an important milestone but represents a lot of work for everybody

	Release Information
	• Back-end software
	covers 11 components (~150,000 lines C++):
	- 6 tested and integrated
	- 2 implemented
	- 2 being designed
	- one left (any takers?)
	now concentrating on regular incremental releases of the software

	• Back-end DAQ software process
	certainly not perfect - but perhaps the best we can do now
	improving all the time:
	- put more order in the detailed design/implementation phase
	- improve software distribution and management tools
	- simpler doc. templates

	Back-End components
	installation and dependencies

