Status of Software for Physics TDR

Atlas Software Week

17 March 1999

G. Poulard

Outline

- Simulation & Reconstruction for the Physics TDR
 - geometry
 - reconstruction
 - combined reconstruction
 - status of the code
- Production
- Summary

Status of geometry description

- Inner Detector & Calorimeters
 - stable since February 1998
 - digitization routine for the COIL
 - bug fix to crack scintillator position
 - new digitization for the TILE calorimeter implemented
- Muon
 - M 2.8 database in October
 - new matter
 - new digitization
- All productions based on 'cmz' version

Reconstruction (1)

Calorimeters

– clunpk few modifications

Ecal
 Em- cluster reconstruction

• em-shower identification, combined matrices

HcalJet reconstruction

• modifications in JetFinder

Emis Missing energy

Reconstruction (2)

- Inner Detector
 - iPatRec Inner detector Pattern Recognition & Reconstruction
 - lot of work for combined reconstruction
 - PixlRec Reconstruction starting with pixels
 - xKalManKalman filtering
 - minor modifications

Reconstruction (3)

- Muon Spectrometer
 - Muonbox
 Reconstruction in the Muon Spectrometer
 - E-loss in muon spectrometer taken into account in fits
 - back tracking through calorimeters (with E-loss)
 - correction of E-loss with energy of calorimeter cells
 - Error matrix provided at the entrance of the Inner Detector

Combined Reconstruction (1)

- e/greconstruction
 - calorimetry + tracker
 - cluster + tracks ---> electrons, photons
 - final PID
 - best E and position
 - produce banks
 - PHOT
 - ELEC
- conversions
 - xconver
 - xhourec

Combined Reconstruction (2)

• Muon "identification"

Track (Muon spect.) + Track (Inner Det). ---> muons

muonbox

iPatRec

MuonboxInterface

MuonIdentification

- tables describe the inactive material
- re-fit at beam-line to muon-hits + E-loss
- match to tracks in corresponding InDet road
- combined fit to all matched combinations
- good at high Pt
- had poor efficiency at low Pt (should be improved now)

Combined Reconstruction (3)

• Muon "identification"

new 'statistical' approach combining covariance matrices

- muonbox
- xkalman

work going on improved efficiency at low Pt

Combined Reconstruction (4)

- Other work(private basis)
 - e/gamma identification
 - conversions
 - soft electron identification
 - muon identification
 - soft muons
 - tilecal cells
 - primary vertex
 - vertex b-tag
 - overall b-tagging (when soft e/mu available)
 - mu-id with COBRA (geane)

Combined Reconstruction (5)

- Combined Ntuple is provided in Atrecon (cbnt)
 - Ntuple is filled from output Zebra banks of atrecon (RECB chain)
 - possibility to fill in from DST (if any)

Status of the code

- All code now in srt/cvs
 - dice not fully tested
 - not yet an 'official' release
- Applications
 - DiceMain
 - DicePytMain
 - AtreconMain
- not all platforms

Production

Simulation

- refer to Production Web page :
- http://www.cern.ch/Atlas/GROUPS/SOFTWARE/HELP/productions.html

Reconstruction

- mostly done on private basis
- non exhaustive list
- http://nicewww.cern.ch/~poulard/workshop/march_99/prod_1.html
- http://nicewww.cern.ch/~poulard/workshop/march_99/prod_2.html
- http://nicewww.cern.ch/~poulard/workshop/march_99/prod_3.html

Summary

- Code for the Physics TDR is there
 - major reconstruction programs have evolved
 - combined reconstruction is still being improved
- High effort to meet the dead-line

Next

- Evolution of the geometry
 - Is-it needed?
 - Time scale
 - reference version for Geant4 ?
- Evolution of the Reconstruction
- Do we want a comparison in 200?
- Analysis in new framework of produced data?
- Effort to maintain a running software!