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= Physical model may be changed to optimise performance
= EXxisting applications continue to work
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Objectivity/DB Architecture

m Architectural Limitations: OID size 8 bytes :
m 64K databases Federation
m 32K containers per database PN
m 64K logical pages per container Database
— 4GB containers for 64kB page size
— 0.5GB containers for 8kB page size /\
m 64K object slots per page Container
m Theoretical limit: 10 000PB AN
— assuming database files of 128TB Page
m RD45 model assumes 6.5PB TN
— assuming database files of 100GB Object

— extension or re-mapping of OID have
been requested
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A Distributed Federation

Application Host Application & Disk Server

Application Application

Objy Client Objy Client Objy Server

Disk Server Data Server
connected to HPSS
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Page Server &
Container Locking

m Objectivity/DB
— Page exchange between client and server

m Page does contain not only requested data

m In case of good clustering, it contains other objects that will
be requested soon

— Server only ‘“knows”’only about 1/0 pages
m Thin server, fat client
= Improved scalability

— Locking on container level
m All objects in one container are locked at once
= Improved scalability and performance

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99



Example | - populateDb

m /afs/cern.ch/sw/lhcxx/share/HepODBMS/pro/examples

m Objective:
Populate a Database with Persistent Events

— Define all involved classes

m Simple object model consisting of :
Event, Tracker, Track, Calo, Cluster

— Create a Federation containing Databases and
Containers
m Tracking and calo data are kept in separate databases (files)

— Create event objects
m Events contain randomly generated tracks and clusters
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Defining a persistent class

o Define a C++ class in a .ddl file
—very similar to a normal C++ header file
— some restrictions apply (see next slides)
—some additional features are available

o Inherit from the persistent base class

class Event : public d Object {
public:
Int eventNr;

3
® Introduce the new class to the database schema
— Run to Objectivity Schema Processor ooddIx
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DDL Restrictions

m Persistent classes may not:

(E contain other persistent classes as data members
= They may contain references to other persistent class though
m Late (multiple-) inheritance from d_Object helps to keep
transient and persistent classes in sync
e contain C++ pointers or references
m Neither directly nor through embedded classes
m replace C++ pointers by database smart pointers

@ Is the more Intrusive change

m Type declarations of pointers referencing persistent
objects have to be changed for all clients of a persistent
class.

m Code that only uses these variables stays largely untouched.
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DDL - Additional Features

m Persistent classes may use in addition:

— variable length arrays as data members

m Example:

A Tracker object contains a variable number of Track objects
d Varray<Track> tracks;

— bi-directional associations

m Example:
Each Event has one Tracker, each Tracker belongs to one
Event.

d Ref<Tracker> itsTracker <-> itsEvent;

— 1-to-N or N-to-M associations

m Example:

One Run object keeps links to all its “N*’events:
d Ref <Event > itsEvents[];
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Schema Handling

e PPimee |
m Definitions of persistent
capable classes made In OBL Processor
.DDL files
B ooddIx processor Soherms
generates appropriate ¥
Eoan .
headers & source code G+ Compiler

— Schema is added to e
federated database

m Applications are built using

generated files and the "
Objectivity library Dabase
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Objectivity/DB Object Browser
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HepODBMS Layer

m Goal:

— Independence from vendor and/or release
changes
= Naming indirection of most prominent API classes
= Provide missing features of the ODMG standard

— HEP specific high level classes
m Session control and diagnostic
m Transaction control
m Clustering Hint classes
m Scalable collections (> 10° Objects)
m Hierarchical Object Naming
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Database Session Control

m HepDDbApplication class - encapsulates db session control
— Initialise the database session
— Start/Commit/Abort Transactions
— Set lock handling options, lock wait time, number of retries
— High level interface that allows
m open/create/find FDBs, DBs and containers
— Provide job or transaction level diagnostics for
m cache efficiency
m disk 1/0s
m Object accesses and updates
m container and object extension

— steered by API and/or environment variables

— based on the ooSession class from Objectivity
m small changes for Solaris, NT and transaction abort
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Setting up a DB session using the
HepDbApplication class

mai n()
{
HepDbAppl i cation dbApp; // create an appl. object
dbApp.init(“MFD"); /[l init FD connection
dbApp. st art Updat e() ; /[l update nbde transaction
dbApp. db(*“ User DB") ; [l swtch to db “User DB"

/| create a new cont ai ner
Cont Ref hi st Cont = dbApp.contai ner(“histos”);

/Il create a histogramin this container
HepRef (H st 0lD) h new( hi st Cont) H stolD(10,0,5);

dbApp. comm t () ; /[l Commt all changes
}
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Object Clustering

m The “hew’’operator provided by Objectivity allows to
specify a clustering hint
— may be a db, container or object reference
— in which db, which container or close to which other object

should the new object go

m HepODBMS contains classes to encapsulate the
clustering strategy in “Clustering Hint’’objects
— clustering into single physical containers (< .5 GB for 8kB pages)

— clustering into logical containers (infinite size, spread over
several db files)

— parallel writing without lock contention
— parallel load balanced reading
— definition of class based clustering through persistent objects
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Clustering by Class

/[l class definition in Track. ddl
class Track : public d_Qbject {
d_Doubl e phi;
d Doubl e thet a;
d ULong noOFHits;
/[l nmore stuff [.]
publ i c:
static HepContai nerH nt clustering;
}
[.]
[/l define clustering at startup
Track: :clustering = dbApp. contai ner(“tracks”);
[.]
/]l use the clustering defined for tracks
HepRef (Track) aTrack =

new (Track::clustering()) Track;
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Clustering on a Larger Scale

m Objectivity limits containers to 64k logical pages
— about 0.5 GB for 8kB page size
Simple strategy:
— check container size when a new object is created
— create a new container if the current one approaches the limit
— manage a persistent list of containers
m Objectivity locks on container level
— Reduce lock contention in multi-processor environments
Simple strategy:

— assign one container per process
— manage the list of containers as a logical super-container

m HepCl usteri ngH nt class implements both
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Persistent Clustering & Parallel Writers

I/l class definition in Track. ddl
class Track : public d Cbject {
d_Doubl e phi ;
d_Doubl e thet a;
d Uong noOHits;
I/l nore stuff
publi c:
static Hepd usteringH nt clustering;
}
[l find the persistent clustering object for tracks
If ( !'Track::clustering.find(“tracks”))
Track::clustering.create(“tracks”));

HepC usteringH nt::setParall el WiterMde(noO Procs, nyl D) ;
I/l clustering use spread all over the source code
HepRef ( Track) aTrack = new (Track::clustering()) Track;
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Persistent Analysis Objects

m LHC ++ uses Objectivity/DB to
— Provide persistency for Histogram, Tag and Event Data
— Exchange objects between modules in a distributed environment
m Object identifiers (OIDs) allow to directly access objects
m Setup before LHC++ 99a

— Each user works in a private database (e.g., in AFS space)
m Analysis programs run against local data

m Goal: Central Objectivity Service
— Shared federated database per experiment

— Common data is available experiment wide
e.g. tag collections, simulated events or test beam data
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Ntuple versus TagDB Model

; Event Data Files E Ntuple File S

; Federated DB of Event & Tag

Object Association

)
o) (i
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Purpose of Using Tags

m Tags are mainly used to speedup selections

— Tag data is much better clustered than the original
event tree but still logically attached!

m Tag Collections define Event Collections

— Tag Collections are only a special case of an Event
Collection

m Tag attributes may be visualised interactively
— without the need to write any code

m Association to the Event may be used to
navigate to any other part of the Event

—even from an interactive visualisation program
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Example Il: createTag

m Objective:
Create a collection of all events which contain at least
two oppositely charged tracks with p t > 1 GeV

o Loop over all events
-Iind tracks withp t>1

® Keep references to matching events in a
persistent collection

o Define some useful variables in a tag for later
Interactive analysis

®
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Collections of Tags

m Generic Tags
— Generic content: No need to define a new persistent class
— May use predefined types: float, double, short, long, char
— Additional attributes may be added later
— Interactive display using IRIS Explorer

/Il create a new tag collection
GenericTag hi ghPt(“high pt events”);

/]l define all attributes of ny tags

TagAttri but e<l ong> evt No( hi ghPt, "event No") ;
TagAttri but e<doubl e> pt Pl us(hi ghPt, " pt Pl us");
TagAttri but e<doubl e> pt M nus(hi ghPt, " pt M nus");
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Filling a Tag Collection

m Tag Attributes are used just like other C++ variables

TagAttri bute<long> evtNo(highPt,"event No");
TagAttri but e<doubl e> pt Pl us( hi ghPt, " pt Pl us");
TagAttri but e<l ong> nTracks(hi ghPt, " nTracks”);

if > 2)
{

/Il create a new tag and store the event reference
hi ghPt . newTag(evt);

/!l define its tag attri butes

evt No = evt->event No;
pt Pl us = evt->tracker.tracks] ]. pt;
nTracks = evt->tracker.tracks.size();

}
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Analysis using Tag & Event Data

m Select on tag attributes and directly access event

data
for (nmore=hi ghPt->start(); nore!=0; nore=highPt->next())

{

I/l apply nore cuts

I f (ptPlus > 3 &% nTracks < 10)

{ [l ...fill histograns fromthe tag...
cout << “eventNo: “ << eventNo << endl:
pt Pl usH sto->fill (ptPl us);
pt M nusHi sto->fill (pt M nus);

HepRef (Event) evt;

hi ghPt - >get Event (evt) ;

/[l ...but also using data fromthe event.
NClusterH sto->fill (evt->cal o.clusters. size());

}
}
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Hierarchical Naming

m Need a way to organise/lookup objects which are entry
points into disconnected parts of our object model
— e.g. Event Collections or Histograms

m Each user might need to reference thousands of those
objects
— Flat name space would become difficult to manage

— Tree like approach (as used in file systems) is familiar to most
users

m At the RD45 Workshop in February/April
— Hierarchical naming service for (any) persistent object
— Agreement on the main requirements
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Requirements

m External Naming
— any persistent class may be named
—no change to object schema

m Independent of Physical Model
—named object may be anywhere in the FD
— similar approach to bookmarks in Netscape

m Multiple Names for the same object

m Scalable
— One hash table per directory

¢ Do not replace associations with names!
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HepNamingTree

m Two class implementation using Objy
— HepNamingNode (persistent)
— HepNamingTree (transient)

m HepNamingTree provides all methods to
navigate within the tree structure and to create
new nodes

— makeDirectory(path), changeDirectory(path),
removeDirectory(path)

— nameQObject(objRef,path), findObject(path),
removeName(path), removeObject(path)

— startltr(), nextltr()
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Current and Future Use

m Implementation available in HepODBMS
— Used e.g. by HTL to provide named Histograms

m BaBar is using a similar approach for their event
collections

m LHC++ will need to provide a more flexible way
to deal with histograms in shared federations
— currently based on physical model
— database and container browser
— support for logical naming starting with 99a release
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Improvements wrt. Old Class

m Switched from scope names to ooMaps to
Implement directory hash lookups

— better control over tuning parameters for hashing

m Using ooMap solves also inconsistency problems
If named objects are deleted through OID

— 00Map uses a bi-directional association to the named
object (predefined in 000Db))

—When an object is deleted Objy deletes any
associated ooMap entries as well.
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Limited Support for Meta Data

m Naming Node keeps some Meta Data

— always
m time of creation
m external object type

— optional
m extendible list of property value pairs (strings)
m .. Comment = “test”]

m Basic support for finding objects by property
— Iteration over directory or subtree
— application of search predicate object
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Integration with HepDbApplication

m Default HepNamingTree naming is available from
the HepDDbApplication object

m User will be put into a private “‘Home Directory”’at
startup

t ypedef h_seg<Event > Event Col ;

HepDbAppl i cati on app;

app.init(“fdBoot Nane”); // inplicit cd /usr/$SUSER/
app. nam ng() . changeDi rectory(“test-beant);

evt Col = app.nam ng().findQbj (“iI nput Events”);
EventCol ::iterator it;

for (it = evtCol.begin(); it !'=evtCol.end(); it++)
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C++ Example: Yet Another Shell

m Simple C++ example program showing how to
use the naming interface
— navigation in the tree
— creation/deletion of named objects
— printing/dumping of objects by name
— Source comes as part of the HepODBMS example tree

m DEMQO?
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Java Interoperabilty

m Simple Interactive Tree Browser

— Ported the naming tree classes to Java
m read only access for now

— less 200 lines using the Swing GUI classes
— No native callbacks, just using the Objy/Java binding

m Few problems during the port
— My first Objy/Java program :-)
— Had to “tse””an ooMap instead of inheriting from it
m ooMap is “final’’in Java

— Difficulties to obtain an the OID of an object if the corresponding class
does not exist in Java

m Java binding sometimes is too typesafe to implement e.g. generic browsers
m DEMO?
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HepODBMS Collections

m Why yet another set of collections?

— Qur requirements are different

m very large collections
— efficient set operations
— efficient iteration order

m problems with exposing the underlying implementation of
many different collection types

= we will need some integration of queries

— Collections and Iterators are a MAJOR part of the
visible interface of an ODBMS

m Extension of the HepODBMS insulation layer
= Minimise the code changes after changing the ODBMS
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Collection Implementation

m Templated collection of any kind of persistent objects
— typedef h_seq<Event> EventCollection;

m Single class interface

— STL interface independent of implementation
m Single User visible collection class : h_seq<T>
m Single STL like iterator: h_seq<T>::iterator

— Uses hybrid of templated classes and delegation
— User extendible through strategy objects
m Currently Implemented Strategies
— vector of references (based on STL)
— paged vector of references
— single container
— group of containers
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Reader Example

/1 find a collection using the naming service
EventCollection evtCol = app.naming().findObj(“7usr/dirkd/collections/myEvents’);

// STL like iterator
EventCollection::const_iterator it;

it = evtCol.begin();
while( it = evtCol.end() )
{

cout << "Event: " << (*it)->getEventNo() << endl;
+-+it;

}

/1 support for (some) STL algorithms
int cnt=0;
count(evtCol.begin(),evtCol.end(),1,cnt);
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Writer Example

EventCollection evtCol(’tollections/myEvents","container");
HepRef(Event) evt;
for (int i=0; 1<500000; i++)

{

// create a new event using the clustering hint of the sequence
evt = new(evtCol.clustering()) Event;

// store the new object ref in the sequence (only needed for ref collections)
evtCol.push_back(evt);

// fill the event
evt->setEventNo(i);
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The End



