Object Databases as
Data Stores for HEP

Part 1l

Dirk Dullmann
CERN IT/ASD, RD45

Physical Model and Logical Model

Storage Hierarchy | User View
@ ———
I,_.__EQ,,,QE_J

T
e

RASAOATY:
00 o e

Containers

Federation

Databases

= Physical model may be changed to optimise performance
= EXxisting applications continue to work

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Objectivity/DB Architecture

m Architectural Limitations: OID size 8 bytes :
m 64K databases Federation
m 32K containers per database PN
m 64K logical pages per container Database
— 4GB containers for 64kB page size
— 0.5GB containers for 8kB page size /\
m 64K object slots per page Container
m Theoretical limit: 10 000PB AN
— assuming database files of 128TB Page
m RD45 model assumes 6.5PB TN
— assuming database files of 100GB Object

— extension or re-mapping of OID have
been requested

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

A Distributed Federation

Application Host Application & Disk Server

Application Application

Objy Client Objy Client Objy Server

Disk Server Data Server
connected to HPSS

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Page Server &
Container Locking

m Objectivity/DB
— Page exchange between client and server

m Page does contain not only requested data

m In case of good clustering, it contains other objects that will
be requested soon

— Server only ‘“knows”’only about 1/0 pages
m Thin server, fat client
= Improved scalability

— Locking on container level
m All objects in one container are locked at once
= Improved scalability and performance

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Example | - populateDb

m /afs/cern.ch/sw/lhcxx/share/HepODBMS/pro/examples

m Objective:
Populate a Database with Persistent Events

— Define all involved classes

m Simple object model consisting of :
Event, Tracker, Track, Calo, Cluster

— Create a Federation containing Databases and
Containers
m Tracking and calo data are kept in separate databases (files)

— Create event objects
m Events contain randomly generated tracks and clusters

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Defining a persistent class

o Define a C++ class in a .ddl file
—very similar to a normal C++ header file
— some restrictions apply (see next slides)
—some additional features are available

o Inherit from the persistent base class

class Event : public d Object {
public:
Int eventNr;

3
® Introduce the new class to the database schema
— Run to Objectivity Schema Processor ooddIx

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

DDL Restrictions

m Persistent classes may not:

(E contain other persistent classes as data members
= They may contain references to other persistent class though
m Late (multiple-) inheritance from d_Object helps to keep
transient and persistent classes in sync
e contain C++ pointers or references
m Neither directly nor through embedded classes
m replace C++ pointers by database smart pointers

@ Is the more Intrusive change

m Type declarations of pointers referencing persistent
objects have to be changed for all clients of a persistent
class.

m Code that only uses these variables stays largely untouched.

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

DDL - Additional Features

m Persistent classes may use in addition:

— variable length arrays as data members

m Example:

A Tracker object contains a variable number of Track objects
d Varray<Track> tracks;

— bi-directional associations

m Example:
Each Event has one Tracker, each Tracker belongs to one
Event.

d Ref<Tracker> itsTracker <-> itsEvent;

— 1-to-N or N-to-M associations

m Example:

One Run object keeps links to all its “N*’events:
d Ref <Event > itsEvents[];

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Schema Handling

e PPimee |
m Definitions of persistent
capable classes made In OBL Processor
.DDL files
B ooddIx processor Soherms
generates appropriate ¥
Eoan .
headers & source code G+ Compiler

— Schema is added to e
federated database

m Applications are built using

generated files and the "
Objectivity library Dabase

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Objectivity/DB Object Browser

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.c Atlas Software Workshop, May 99

HepODBMS Layer

m Goal:

— Independence from vendor and/or release
changes
= Naming indirection of most prominent API classes
= Provide missing features of the ODMG standard

— HEP specific high level classes
m Session control and diagnostic
m Transaction control
m Clustering Hint classes
m Scalable collections (> 10° Objects)
m Hierarchical Object Naming

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Database Session Control

m HepDDbApplication class - encapsulates db session control
— Initialise the database session
— Start/Commit/Abort Transactions
— Set lock handling options, lock wait time, number of retries
— High level interface that allows
m open/create/find FDBs, DBs and containers
— Provide job or transaction level diagnostics for
m cache efficiency
m disk 1/0s
m Object accesses and updates
m container and object extension

— steered by API and/or environment variables

— based on the ooSession class from Objectivity
m small changes for Solaris, NT and transaction abort

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Setting up a DB session using the
HepDbApplication class

mai n()
{
HepDbAppl i cation dbApp; // create an appl. object
dbApp.init(“MFD"); /[l init FD connection
dbApp. st art Updat e() ; /[l update nbde transaction
dbApp. db(*“ User DB") ; [l swtch to db “User DB"

/| create a new cont ai ner
Cont Ref hi st Cont = dbApp.contai ner(“histos”);

/Il create a histogramin this container
HepRef (H st 0lD) h new(hi st Cont) H stolD(10,0,5);

dbApp. comm t () ; /[l Commt all changes
}

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Object Clustering

m The “hew’’operator provided by Objectivity allows to
specify a clustering hint
— may be a db, container or object reference
— in which db, which container or close to which other object

should the new object go

m HepODBMS contains classes to encapsulate the
clustering strategy in “Clustering Hint’’objects
— clustering into single physical containers (< .5 GB for 8kB pages)

— clustering into logical containers (infinite size, spread over
several db files)

— parallel writing without lock contention
— parallel load balanced reading
— definition of class based clustering through persistent objects

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Clustering by Class

/[l class definition in Track. ddl
class Track : public d_Qbject {
d_Doubl e phi;
d Doubl e thet a;
d ULong noOFHits;
/[l nmore stuff [.]
publ i c:
static HepContai nerH nt clustering;
}
[.]
[/l define clustering at startup
Track: :clustering = dbApp. contai ner(“tracks”);
[.]
/]l use the clustering defined for tracks
HepRef (Track) aTrack =

new (Track::clustering()) Track;

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Clustering on a Larger Scale

m Objectivity limits containers to 64k logical pages
— about 0.5 GB for 8kB page size
Simple strategy:
— check container size when a new object is created
— create a new container if the current one approaches the limit
— manage a persistent list of containers
m Objectivity locks on container level
— Reduce lock contention in multi-processor environments
Simple strategy:

— assign one container per process
— manage the list of containers as a logical super-container

m HepCl usteri ngH nt class implements both

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Persistent Clustering & Parallel Writers

I/l class definition in Track. ddl
class Track : public d Cbject {
d_Doubl e phi ;
d_Doubl e thet a;
d Uong noOHits;
I/l nore stuff
publi c:
static Hepd usteringH nt clustering;
}
[l find the persistent clustering object for tracks
If (!'Track::clustering.find(“tracks”))
Track::clustering.create(“tracks”));

HepC usteringH nt::setParall el WiterMde(noO Procs, nyl D) ;
I/l clustering use spread all over the source code
HepRef (Track) aTrack = new (Track::clustering()) Track;

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Persistent Analysis Objects

m LHC ++ uses Objectivity/DB to
— Provide persistency for Histogram, Tag and Event Data
— Exchange objects between modules in a distributed environment
m Object identifiers (OIDs) allow to directly access objects
m Setup before LHC++ 99a

— Each user works in a private database (e.g., in AFS space)
m Analysis programs run against local data

m Goal: Central Objectivity Service
— Shared federated database per experiment

— Common data is available experiment wide
e.g. tag collections, simulated events or test beam data

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Ntuple versus TagDB Model

; Event Data Files E Ntuple File S

; Federated DB of Event & Tag

Object Association

)
o) (i

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Purpose of Using Tags

m Tags are mainly used to speedup selections

— Tag data is much better clustered than the original
event tree but still logically attached!

m Tag Collections define Event Collections

— Tag Collections are only a special case of an Event
Collection

m Tag attributes may be visualised interactively
— without the need to write any code

m Association to the Event may be used to
navigate to any other part of the Event

—even from an interactive visualisation program

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Example Il: createTag

m Objective:
Create a collection of all events which contain at least
two oppositely charged tracks with p t > 1 GeV

o Loop over all events
-Iind tracks withp t>1

® Keep references to matching events in a
persistent collection

o Define some useful variables in a tag for later
Interactive analysis

®

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Collections of Tags

m Generic Tags
— Generic content: No need to define a new persistent class
— May use predefined types: float, double, short, long, char
— Additional attributes may be added later
— Interactive display using IRIS Explorer

/Il create a new tag collection
GenericTag hi ghPt(“high pt events”);

/]l define all attributes of ny tags

TagAttri but e<l ong> evt No(hi ghPt, "event No") ;
TagAttri but e<doubl e> pt Pl us(hi ghPt, " pt Pl us");
TagAttri but e<doubl e> pt M nus(hi ghPt, " pt M nus");

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Filling a Tag Collection

m Tag Attributes are used just like other C++ variables

TagAttri bute<long> evtNo(highPt,"event No");
TagAttri but e<doubl e> pt Pl us(hi ghPt, " pt Pl us");
TagAttri but e<l ong> nTracks(hi ghPt, " nTracks”);

if > 2)
{

/Il create a new tag and store the event reference
hi ghPt . newTag(evt);

/!l define its tag attri butes

evt No = evt->event No;
pt Pl us = evt->tracker.tracks]]. pt;
nTracks = evt->tracker.tracks.size();

}

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Analysis using Tag & Event Data

m Select on tag attributes and directly access event

data
for (nmore=hi ghPt->start(); nore!=0; nore=highPt->next())

{

I/l apply nore cuts

I f (ptPlus > 3 &% nTracks < 10)

{ [l ...fill histograns fromthe tag...
cout << “eventNo: “ << eventNo << endl:
pt Pl usH sto->fill (ptPl us);
pt M nusHi sto->fill (pt M nus);

HepRef (Event) evt;

hi ghPt - >get Event (evt) ;

/[l ...but also using data fromthe event.
NClusterH sto->fill (evt->cal o.clusters. size());

}
}

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Hierarchical Naming

m Need a way to organise/lookup objects which are entry
points into disconnected parts of our object model
— e.g. Event Collections or Histograms

m Each user might need to reference thousands of those
objects
— Flat name space would become difficult to manage

— Tree like approach (as used in file systems) is familiar to most
users

m At the RD45 Workshop in February/April
— Hierarchical naming service for (any) persistent object
— Agreement on the main requirements

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Requirements

m External Naming
— any persistent class may be named
—no change to object schema

m Independent of Physical Model
—named object may be anywhere in the FD
— similar approach to bookmarks in Netscape

m Multiple Names for the same object

m Scalable
— One hash table per directory

¢ Do not replace associations with names!

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

HepNamingTree

m Two class implementation using Objy
— HepNamingNode (persistent)
— HepNamingTree (transient)

m HepNamingTree provides all methods to
navigate within the tree structure and to create
new nodes

— makeDirectory(path), changeDirectory(path),
removeDirectory(path)

— nameQObject(objRef,path), findObject(path),
removeName(path), removeObject(path)

— startltr(), nextltr()

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Current and Future Use

m Implementation available in HepODBMS
— Used e.g. by HTL to provide named Histograms

m BaBar is using a similar approach for their event
collections

m LHC++ will need to provide a more flexible way
to deal with histograms in shared federations
— currently based on physical model
— database and container browser
— support for logical naming starting with 99a release

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Improvements wrt. Old Class

m Switched from scope names to ooMaps to
Implement directory hash lookups

— better control over tuning parameters for hashing

m Using ooMap solves also inconsistency problems
If named objects are deleted through OID

— 00Map uses a bi-directional association to the named
object (predefined in 000Db))

—When an object is deleted Objy deletes any
associated ooMap entries as well.

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Limited Support for Meta Data

m Naming Node keeps some Meta Data

— always
m time of creation
m external object type

— optional
m extendible list of property value pairs (strings)
m .. Comment = “test”]

m Basic support for finding objects by property
— Iteration over directory or subtree
— application of search predicate object

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Integration with HepDbApplication

m Default HepNamingTree naming is available from
the HepDDbApplication object

m User will be put into a private “‘Home Directory”’at
startup

t ypedef h_seg<Event > Event Col ;

HepDbAppl i cati on app;

app.init(“fdBoot Nane”); // inplicit cd /usr/$SUSER/
app. nam ng() . changeDi rectory(“test-beant);

evt Col = app.nam ng().findQbj (“iI nput Events”);
EventCol ::iterator it;

for (it = evtCol.begin(); it !'=evtCol.end(); it++)

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

C++ Example: Yet Another Shell

m Simple C++ example program showing how to
use the naming interface
— navigation in the tree
— creation/deletion of named objects
— printing/dumping of objects by name
— Source comes as part of the HepODBMS example tree

m DEMQO?

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Java Interoperabilty

m Simple Interactive Tree Browser

— Ported the naming tree classes to Java
m read only access for now

— less 200 lines using the Swing GUI classes
— No native callbacks, just using the Objy/Java binding

m Few problems during the port
— My first Objy/Java program :-)
— Had to “tse””an ooMap instead of inheriting from it
m ooMap is “final’’in Java

— Difficulties to obtain an the OID of an object if the corresponding class
does not exist in Java

m Java binding sometimes is too typesafe to implement e.g. generic browsers
m DEMO?

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

HepODBMS Collections

m Why yet another set of collections?

— Qur requirements are different

m very large collections
— efficient set operations
— efficient iteration order

m problems with exposing the underlying implementation of
many different collection types

= we will need some integration of queries

— Collections and Iterators are a MAJOR part of the
visible interface of an ODBMS

m Extension of the HepODBMS insulation layer
= Minimise the code changes after changing the ODBMS

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Collection Implementation

m Templated collection of any kind of persistent objects
— typedef h_seq<Event> EventCollection;

m Single class interface

— STL interface independent of implementation
m Single User visible collection class : h_seq<T>
m Single STL like iterator: h_seq<T>::iterator

— Uses hybrid of templated classes and delegation
— User extendible through strategy objects
m Currently Implemented Strategies
— vector of references (based on STL)
— paged vector of references
— single container
— group of containers

ODBMS as Data Stores for HEP, Part Il Dirk.Duellmann@cern.ch

Atlas Software Workshop, May 99

Reader Example

/1 find a collection using the naming service
EventCollection evtCol = app.naming().findObj(“7usr/dirkd/collections/myEvents’);

// STL like iterator
EventCollection::const_iterator it;

it = evtCol.begin();
while(it = evtCol.end())
{

cout << "Event: " << (*it)->getEventNo() << endl;
+-+it;

}

/1 support for (some) STL algorithms
int cnt=0;
count(evtCol.begin(),evtCol.end(),1,cnt);

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

Writer Example

EventCollection evtCol(’tollections/myEvents","container");
HepRef(Event) evt;
for (int i=0; 1<500000; i++)

{

// create a new event using the clustering hint of the sequence
evt = new(evtCol.clustering()) Event;

// store the new object ref in the sequence (only needed for ref collections)
evtCol.push_back(evt);

// fill the event
evt->setEventNo(i);

ODBMS as Data Stores for HEP, Part 11 Dirk.Duellmann@cern.ch Atlas Software Workshop, May 99

The End

