
Argonne National Laboratory

ATLAS Tile Calorimeter Testbeam Pilot Project

ATLAS Software Workshop

Geneva

2 September 1999

David Malon
malon@anl.gov

Argonne National Laboratory

Goals and Background

l Support 1999 ATLAS tile calorimeter testbeam data
analysis using candidate ATLAS object-oriented
technologies

l Database foundation is the extensive work done by
Sasha Solodhkov (Protvino) to put last year’s raw
testbeam data into Objectivity

l Serve as a testbed for ATLAS software strategies and
technologies

l Planned since March 1999; begun late May 1999
l Testbeam period: 7-21 July 1999

Argonne National Laboratory

Status

l object-oriented implementation of a logical model of the tile
calorimeter

l detector-centric data access architecture

l access to 1998 and 1999 raw testbeam data from object
database

l support for hot-swappable custom calibration strategies

l support for 1998 default calibration for main module, and for
provisional 1999 default calibration

l reconstructed runs and event collections written to object
database

l for non-C++ folks (PAW/KUIP users), support (with examples)
creation of HBOOK ntuples

Argonne National Laboratory

Tilecal test beam analysis (M. Nessi)

Data base

DAQ
Geant4

Geant3

Interface via tile logical description

Data
Dump Calibration

analysis

Optimal
filtering
analysis

Histogramming

Physics analysis

JAVA
Browser

...

Argonne National Laboratory

Tilecal detector description (proposal, M. Nessi)
Detector::

barrel
- Ext. barrel
+Ext. barrel
Module::

1-64+n

Side::

-/+

Tower::

1-18

Sample(cell)::

A, BC, D

PMT::

L/R

id

[0, 2]

[0, 63] + n

[0, 1]

[0, 17]

[0, 2]

[0, 1]

Submodules::

1-20
type : standard , spec, ITC

Half-period::

1-34
type : standard , spec, ITC

Profile::

L/R
type : Long, Short

Scintillator::

1-6
type : 1-11

Fibre::

1-4
type : 1-xx

Position (R,Z)

Size

Geometry

Energy

Timing

Trigger

Calibration (data, type)

Raw data

QC information

Information present in each box (according to the type of information to be
accessed):

Argonne National Laboratory

Design Notions

l Detector-centric view
– The detector is primary. Events are stimuli to which we want to

understand the detector’s response.
– Contrast with event-centric: The event is primary. The role of the

detector is to help describe and understand the event.
– These are duals of one another. The difference in emphasis has

implications.

l Keep event as opaque as possible
– Physicists navigate through the detector, not through the event
– less chance of significant conflict with ongoing ATLAS event

definition efforts

l [Tile]Detector, Module, Side, Tower, Cell, PMT, and ADC
are TileElements.

l TileCalorimeter is a TileElement factory.

Argonne National Laboratory

Design Notions

l TileElements are created only on demand.
– Instantiating the calorimeter does not mean instantiating

every child element (detector, module, side, tower, cell,
PMT, and ADC).

– This has performance implications (positive and negative).
l TileElements are identified using ATLAS Identifier

model.
– Hierarchical naming/numbering

l TileElement states are implicitly updated when a new
event is associated with the TileCalorimeter.

Argonne National Laboratory

Transient/Persistent Separation

l Physicists see only transient model of calorimeter,
event, and other data.

l Consonant with ATLAS Computing Review
recommendations

l LITMUS TEST: user code must compile without
Objectivity or other datastore header files
– no HepRefs, d_Refs, ooStatus in user code
– a TransientEvent cannot even hold a d_Ref<PersistentEvent> as a

data member (though use of Objectivity directly by an
implementation of TransientEvent is not strictly precluded).

l CONSTRAINT: No modification to existing persistent
classes for raw data

l Even with these constraints, countless strategies are possible
l Exploring several three-layer strategies

– middle layer can be light or heavy, smart or dumb

Argonne National Laboratory

Middle Layer Examples

Some Objectivity mapping examples

l Simple forwarding: wrap a d_Ref
l Intermediate forwarding: wrap a few d_Refs

– adapter may decide whether datum comes from raw or
reconstructed event, or know that charge injection
calibration constants and cesium constants are stored
separately

l Shared adapters:
– all TileADCs share a common TileADCAdapter object;

provides certain collective optimizations

Many, many other strategies are possible.

Argonne National Laboratory

STATUS: Here is what is in the Examples
directory today.

l ShowEnergiesAndAFewADCSamples
– illustrates how to navigate through the logical calorimeter

model in C++ to get energies and access to raw data.
Energies are read from the database if the run you name
has been reconstructed; otherwise, they're computed from
the raw data using a default calibration strategy.

l CompareCalibrations
– illustrates how to supply your own calibration strategy, so

that YOUR favorite methods are invoked by the system
software to compute energies and timings, and how to
alternate easily among multiple calibration strategies
during program execution

Argonne National Laboratory

STATUS: Here is what is in the Examples
directory today.

l ReconstructRun
– shows how to apply your favorite calibration (or the default

calibration) to every calorimeter PMT for all the events in a
run, and how to save those results in the database

l ReconstructPartialRun
– shows how to accomplish the same task for a selected

subset of events

l CreateSimpleNtuple (contributed by Tom LeCompte)
– shows how to fill a simple PAW ntuple from the logical

calorimeter model

Argonne National Laboratory

The basic event loop (detector-centric view)

 TileEventIterator iter;
 for (iter = myRun->begin(); iter!= myRun->end(); ++iter)
 {
 myCal.associate_event(*iter);
 cout<<"PMT "<<(pmt1->id())<<" energy (default calibration) is ";
 cout<<pmt1->energy()<<" , timing is "<<pmt1->timing()<<endl;
 cout<<"Cell "<<(cell1->id())<<" energy is "<<cell1->energy()

<<endl;
// or adc2->cis_calib() or adc2->samples(…) or ...
}

Argonne National Laboratory

The basic event loop (comparing calibrations)

 TileEventIterator iter;
 for (iter = myRun->begin(); iter!= myRun->end(); ++iter) {
 myCal.associate_event(*iter);
myCal.associate_calib_strategy(&strategy1);
 cout<<"PMT "<<(pmt1->id())<<" energy (default calibration) is ";
 cout<<pmt1->energy()<<" , timing is "<<pmt1->timing()<<endl;
 cout<<"Cell "<<(cell1->id())<<" energy is "<<cell1->energy()

<<endl;
myCal.associate_calib_strategy(&strategy2);
 cout<<"PMT "<<(pmt1->id())<<" energy (custom calibration) is ";
 cout<<pmt1->energy()<<" , timing is "<<pmt1->timing()<<endl;
 cout<<"Cell "<<(cell1->id())<<" energy is "<<cell1->energy()

<<endl;
}

Argonne National Laboratory

What’s Next?

l Use it as the testbed for core technologies (especially
database) that it was intended to be
– This was the PURPOSE, from the point of view of core software.

l Fill in the pieces needed to make it useful for tile calorimeter
data analysis
– It handles Module 0 data and calibration well--that was the July

goal--but what about beam data and high voltage info and the
muon walls and … ?

– Pass the baton to tile calorimeter personnel.
These are related. It does not remain an interesting testbed for

long if it does not have clients trying to do real work.

l Make it part of the ATLAS offline software suite.
This will also force us to address database infrastructure issues.

Argonne National Laboratory

Generalizations?

l Geant4 tile calorimeter simulations as alternative data sources
and generalization to other calorimeter testbeams have been
proposed

l Both of these require revisiting the raw data model (which for
this summer was fixed and inherited from 1998 tilecal work)

l The raw model needs to be revisited in any case:
– Some testbed work requires it (e.g., evaluation of certain

components of HepODBMS)
– Makes technical sense given what was learned in implementing

the new software

