
CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Comments on Control/Framework

Craig E. Tull
NERSC - LBNL

ATLAS Software Workshop
CERN - September 1, 1999

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

HENP Computing Challenges

Experiment Data Compute
E895 (AGS) 10 TB/yr 600 SPECint95
BaBar (SLAC) 400 TB/yr 5,000 SPECint95
STAR (RHIC) 266 TB/yr 10,100 SPECint95
PHENIX (RHIC) 700 TB/yr 8,500 SPECint95
D0 Run II (FNAL) 280 TB/yr 4,075 SPECint95
CDF Run II (FNAL) 464 TB/yr 3,650 SPECint95
ATLAS (LHC) 1100 TB/yr 2,000,000 SPECint95

Experiment CountriesInstitutes Collaborators Time Frame
E895 (AGS) 3 12 49 2000
BaBar (SLAC) 9 85 600 2010
STAR (RHIC) 7 34 400 2010
PHENIX (RHIC) 10 41 400 2010
D0 Run II (FNAL) 11 77 500 2005
CDF Run II (FNAL) 8 41 490 2005
ATLAS (LHC) 34 144 1700 2015

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Realities of ATLAS Computing

• Large Data Volume
• Large, Globally Distributed Collaboration
• Long Lived (>15 years) Project
• Large (>2M LOC), Complex Analyses
• Distributed, Heterogeneous Systems
• Reliance on Commercial Software & Standards
• Evolving Computer Industry & Technology
• Object Oriented Programming
• Legacy Software
• Legacy Software Programmers
• Limited Computing Manpower
• Most Computing Manpower are not Professionals

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

What is Control?

• Lassi’s definition: The control is the part of the
infrastructure that makes sure that
— The right piece of software
— Runs
— At the right time
— With the right inputs and
— The outputs go to the right place

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

What is a Framework?

• Gamma, et al., Design Patterns
"When you use a toolkit, you write the main body of the application

and call the code you want to reuse. When you use a
framework, you reuse the main body and write the code it calls."

"Not only can you build applications faster as a result, but the
applications have similar structures. They are easier to maintain,
and they seem more consistent to their users. On the other
hand, you lose some creative freedom, since many design
decisions have been made for you."

"If applications are hard to design, and toolkits are harder, then
frameworks are hardest of all. ... Any substantive change to the
framework's design would reduce its benefits considerably,
since the framework's main contribution to an application is the
architecture it defines. Therefore it's imperative to design the
framework to be as flexible and extensible as possible."

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

According to ATF Glossary

• Framework:
A skeleton of an application into which
developers plug in their code, using mechanisms
defined by the framework. (See also toolset.)
Frameworks have a tendency to impact
significantly the architecture of the system. For
example, Geant3 is a framework.

• Toolset:
A collection of functionality, implemented as
subroutines and functions, or classes. Toolsets
tend to have a smaller influence on the
architecture of a system than frameworks (see
above). For example, HBOOK is a toolset.

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

What is a Component?

• Lakos, Large-Scale C++ Software Design
"A component is not a class and vice versa. Conceptually, a

component embodies a subset of the logical design that makes
sense to exist as an independent, cohesive unit."

"bundles a manageable amount of cohesive functionality that often
spans several logical entities..."

"lifted as a single unit from one system and reused effectively in
another system without having to rewrite any code."

• Garone, Managing Component-Based
Development: SELECT Software Tools
— Is both discrete and well defined in terms of its functionality.
— Provides standardized, clear, and usable interfaces to its

methods
— Can run in a container, with other components, or

standalone (or any combination of these)

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Physics Frameworks

• Framework-"like" programs have been used in
HENP to address software complexity challenge.
— ac++, arve, carf, cleo fw, d0 fw, gaudi, jas, lulu,

openscientist, orca, paw, root, staf, tas, ...
• Too often no distinction is made between

software which address:
— control, data I/O, graphics, data analysis, etc.

• This arises from the desire/necessity that these
"domains" be seamlessly integrated.

• However, the resultant lack of compartmentaliza-
tion complicates maintenance, upgrades, etc.
"the size of the component to be changed has a much larger

impact on effort than the size of the change itself."- Niessink

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Framework Design Classifications

• Finite State Machine - AC++
• Action on Demand - CARF
• Stream/Record/Frame - CLEO
• Simulated Data Flow - Gaudi
• Mobile Agents - JAS
• Object Network - ONCM
• C++ Interpreter - ROOT
• Software Bus - StAF

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Finite State Machine - AC++

• Data and Algorithms indistinct
• All communication between components are

"persistable objects"
— STL-like containers of basic types & storable

pointers
• Using ROOT I/O
• Framework is ignorant of event model

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Action on Demand - CARF

• User requests "Object of Interest"
— Pull, rather than Push concept

• Data and Algorithms distinct?
• Data Objects identified by Type + Producer
• Event based high-level steering

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Stream/Record/Frame - CLEO

• Not event-centric model
• Records have time & duration
• Stream = set of time-ordered records
• Frame is sync of many streams

— snapshot of states of streams

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Simulated Data Flow - Gaudi

• Data and Algorithms distinct
• Physical design - strong focus
• Services defined in terms of abstract interfaces
• Global event - Hierarchical event model
• Converter objects for transient ⇔ persistent
• Data flow not part of algorithm interface

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Object Network - ONCM

• Data and Algorithms distinct
• Dependencies between components determine

execution order
• Based on Observer pattern concept
• Data flow part of algorithm interface
• Data objects - Any valid C++ class
• Distributed memory management

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Software Bus - StAF

• Data and Algorithms distinct
• Physical design - strong focus
• Dynamic loading of components
• CORBA = Widely Accepted Standard
• Data Objects - RDB tables & containers

— Hierarchical (UFS-like) event model
• Algorithm Objects - wrapped F77/C/C++

— Algorithms independent of framework
— Data flow part of algorithm interface

• Strong reliance on code generation

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

"Common" Design Prinicples

• Component design
— Black box/Black world

• Data distinct from Algorithms
— Data HAS a special role in physics analysis

• Physical design considerations
— Compile, link, & run time dependencies

• Data flow part of algorithm interface
— Interface says what component does

• Observer Model for Algorithms
— Automatic actions based on dependency

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Other Design Prinicples

• Code generation tools
— Makes users' lives simpler
— Provides natural tool for migrations

• Dynamic loading
— Provides fast prototyping capability

• Code ⇒ Script ⇒ GUI
— Prog/Script Lang. - Batch
— Script Lang. - Complex Interactive
— GUI - Ease of use and automation

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

PC: Code Generation Tools

IDL ODL/DDL C++ Java XMI/MOF
Suitability control + interface

description
 + superset of IDL Too complex? arguments +

Suitability event - no persistence,
no associations, ...

 + ATLAS is using
it

as IDL No associations +

Tools: parsers Sun CFE, ORBs,
JavaCC

Objectivity internal -cint JavaCC Argo, Rose?

Tools: API Interface
Repository (ORBS)

Objectivity internal - ROOT Meta
Library

Language ?

Stability + ? + At least as dict
language

?

Lifetime industry standard,
tools to evolve

dying? + + ?

Overall simple, suported Much related to
Objectivity

Hardest for
generator

Easiest for
generator

Shot in the dark

• Tools like SWIG already exist
• Need to generate: headers, adapters, skeletons,...
• Programming Lang.-neutral Description Lang?

— Multi-lang support, graceful retirement

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

JM: JavaCC IDL 2 SWIG

• Use IDL as the single method for describing
interfaces between components

• Parser and AST generation using jjtree and
javacc

• SWIG emitter scans tree 3 times to generate
typemaps, classes, & additional methods

• SWIG supports several different interface
languages (eg. Tcl, Perl, Python, etc.)

• IDL vs. C++
— Productions: IDL=75/C++=111
— JavaCC Specifications: IDL=10k, C++=39k
— JavaCC LOOKAHEADs: IDL=3, C++=120

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

PC: Control State Object Net

• Is data-flow the way we think when we analyze
the data?
— No! We pull data at random (well…) from the

modules that reconstructed them, after they
are done for that event (run, job,…)

• How easy will be to predict (and repeat!) the
execution path of a 1000 objects network?

• I don’t think we can reasonably interact with a
self-triggering network of say 1000 components
without knowing its global state.

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

PC: The Control States Network

NewJob NewEvt OnErr

•Sources

•States

•Components

•State Methods

HitFinder Tracker

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

ATLAS TDR Software in StAF

• XKALMAN
Reconstruction

• ZEBRA banks to
StAF
Tables & Datasets

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Year 1 Design & Proto.

• Requirements Doc.s - ATF
• Use Case Scenarios/Behaviors - Amako, Tull, etc.
• "Market Surveys"

— Framework/Control Architectures ATF, LBL
• Object Network, Software Bus, Simulated Data Flow,

Finite State Machine, etc.

— Software/Hardware Technologies
• eg. CORBA 3, IA64, Java Beans, XMI/MOF, ...
• "Think" 5-20 years out
• Implement 1-3 years out

— Other Software Projects
• eg. ACE, Clipper, Nova, PP Data Grid, SWIG, ...

— Leverage FTEs & Expertise

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

CD: Common HEP Behavior Patterns

• Reconstruction
— Every event touched, all data in an event

touched, considerable data generated.
• Data mining

— Bulk data processing to extract all events
meeting particular, restrictive criteria. Every
event in input collection touched, but not all
data in an event touched. Little added data.
Usually done by iterated refinement.

• Data prospecting
— Highly interactive processing of test samples.

Intensely volatile no two physicists doing the
same thing, no physicist doing the same thing
twice.

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Time Lines and Pressures

• Control Framework development MUST be
heavily front loaded.
— To begin analyzing physics data in 2005...
— ...we need an MDC in 2003/2004, which

implies...
— ...physicists have developed, integrated, and

debugged their analysis code, which
requires...

— ...the framework in which their code runs has
been designed, developed, debugged, and
documented.

• However, analysis codes (ie. Physics TDR) exists
today that people want to use today.

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Usable Prototype in FY2000

• Physics TDR Software runnable & usable
— Comparison w/ TDR
— Not all code will be C++-ified at same time

• SW Tools for integration (some, proto.s)
— Ease migration for users

• Functional user interface (non-dist'd)
— Scripting lang. only - no GUI

• Natural interface to Anal. Tool(s)
— Plural seems right - PAW, ROOT, HTL, JAS

• Working interface to ATLAS DB(s)
— and ZEBRA? (converted?)

• Usable for OO SW Devel.

CETull@lbl.gov : ATLAS Control : 01sep99 : http://arc.nersc.gov/control/

Year 1 Technical Decisions

• There are MANY, including:
— Primary Design Classification

• Object Net, Software Bus, etc. - Hybrid/Combination

— Physics TDR Software
• F77 Wrapping, COMMON block elimination, ZEBRA

— Core Programming Language
• Certainly C++ now; Role for Java?

— Dictonary Language
• eg. IDL, C++, ODL/DDL, Java, XMI/MOF, SWIG, ...

— Communication Protocol
• eg. CORBA, Java RMI/Java Beans, DCOM, RYO

— Storage Technology Neutral DB Interface
• Transient/Persistent Mapping

