
various
 broad

aspect.
 (OD-

escrip-

n and
ign of
oftware
rk for
nett,
ess to

erms of
at we

idered
in the
rtain.
e, the
ssible

re the
Overview of ATLAS Database Activities

A. (RD) Schaffer, representing the ATLAS software team

CERN, Geneva, Switzerland*

1 Introduction

Database work has begun in a number of areas within ATLAS:

• offline:

Detector Description domain, and

Event domain

• Test beam

• Detector construction measurements
Each of these areas will be covered in turn. We are in the early stages of designing the
systems that need to be stored, so that we interpret the term “database work” in a fairly
sense of system design. And we are not strictly limiting the discussion storage-related
The current baseline for ATLAS is to use an object-orient database management system
BMS) for its major storage needs: i.e. event data, calibration/alignment, and detector d
tion.

2 Offline: near term goals

One of our major near term goals is to have a first version of an object-oriented simulatio
reconstruction framework available by the end of 1999. Since all of the work for the des
the detector has been done using FORTRAN, this means that we must move both the s
AND the programmers to C++. One of the key first steps is to provide a C++ framewo
people to develop within. We have adopted a framework initially written by Toby Bur
called Arve. (This will not be discussed further here.) Another key point is to provide acc
existing simulated data, which is needed for any realistic test of newly developed code.

2.1 Offline: Detector Description domain

Detector description refers to all the parameters needed to describe the detector, in t
material, shape, position, etc., for all offline applications. One of the key requirements th
have is to provide a single source of detector description information for all applications, as can
be viewed in Fig. 1. Here there is a single detector description data store which is cons
the master source. In the near term future, this will most likely be simple ASCII files, and
longer term and ODBMS. The exact connection with the CAD system is today unce
Although it is desired to be able to use the same information that the engineers us
technological connection is not yet clear. Within the context of Geant3, this has been po
with a product which runs on a Euclid CAD system. But work remains to be done to explo
possibilities with Geant4 and, for example, the use of its STEP-Express interface.

base”
ins the
ments
, for
hich

n. The
RAN

 worth
basic
eneral

re are
l must
Note
hanism.
ged

fferent

 fairly
o build
ied by
 using
Figure 1: Detector description database is the primary source for all applications.

Our detector description work has begun by concentrating on an existing “data
developed for the muon spectrometer. This database is simply an ASCII file which conta
description of the different types of chambers and as well the positioning of the actual ele
which will be built. Some thought had gone into this description to allow it to be concise
example by allowing a simple parameterization for the chamber positioning in phi w
exploits the phi symmetry. An object model has been easily derivable from the descriptio
basic functionality of the ASCII file database system is to read the file and fill either FORT
commons or Zebra banks. This functionality has been preserved.

In developing an object oriented version of this muon database, two aspects are
mentioning: the overall architecture and the use of hierarchical identifiers. The
architecture can be viewed in Fig. 2. Here there is a central transient object model for the g

Figure 2: Overall architecture of the detector description domain

description. All other models are filled from this central transient one. For example, the
the application specific models for the simulation and reconstruction. The central mode
contain sufficient information for the different requirements of the various applications.
that the central model decouples the applications from the actual persistent storage mec
In this way, one can easily evolve from an ASCII file being the primary store to a full-fled
object database. A generalised mechanism for transformations between the di
representations uses the visitor pattern (see ref. [1] for a discussion on visitors).

The use of hierarchical decomposition, i.e. a part contains other parts, etc., is a
natural way to describe a detector. For those familiar with Geant3, this technique is used t
a geometry tree which in turn is used for the tracking. Any node in a tree can be identif
its path from the root. We have adopted such a scheme for identifying detector parts
hi hi l id tifi A fi t i l t ti l id tifi l hi h t i

Detector
Description

CAD
System

Simulation Reconstruction Event Display

?

FORTRAN
commons

transient
model

persistent
model

application
specific
model

ASCII
file

stored in
objy

Using visitor pattern
for transformations

Compatibility
with old code

applicationsstorage

ector

data to
xample
eloped

4 the
ith the

le for
o add
within
RN

sult of
This general identifier class is used to identify the parts of the detector, e.g. each read-out
channel, in a logical manner. For example, the ATLAS Pixel vertex detector is composed of
wafers which can be viewed as being logically organized into barrel or endcap, layers, rings and
phi sectors, i.e.:

Figure 3: Logical decomposition of the ATLAS pixel detector

Thus, an individual wafer may be identified as: wafer_id = “barrel / layer 1 / ring 3 / phi s

5”, and an individual pixel: pixel_id = wafer_id + “eta 19 / phi 33”2. These identifiers can be
used as a means mapping detector-related information together, for example from raw
calibration or detector description quantities. They can also be used to select data, for e
by reconstruction algorithms. In order to help with selection, a Range class has been dev
which allows a concise expression of a range of identifiers. For example, in Fig.
rectangular set of pixels may be specified by a Range object which has been initialized w
pixel identifiers at the two corners.

Figure 4: Identifying a set of pixels with a single range object

A working transient-only version of the detector description database is now availab
part of the Muon Spectrometer to allow feedback from clients. Our next steps are t
persistency and begin to extend to other detector systems. As a final point, this work
ATLAS is not going on in isolation: an informal collaboration has recently begun at CE
between the LHC experiments. It is not yet clear what common elements will be the re
this effort, but already the exchange ideas has been found useful.

1 The formatting information defines which bits in a bit string provide the number of each node in the identifier
tree. The current implementation stores a pair of numbers for each level in the identifier tree: a number indi-

eta

phi

Pixel wafer

wafer_id

pixel_id

Pixel Detector

layers phi sectors

barrelend-cap end-cap

rings

rings

Pixel wafer

eta

phi

id1

id2
Range(id1, id2)

ularly
couple
tly, we

orage of

. 5:

e case

 and
TL-like

ber,
 drift
ctor
, where
e latter
ity to
ortant

n event
llect

ts of the
uld be

nd to a
2.2 Offline: Event domain

Given the above mentioned near term goals, the primary effort in the event domain has been
focused on the design and implementation of those classes needed to access the raw data
generated by the current Geant3 simulation. For the moment, we have chosen to separate the
transient and persistent parts of the software, similar to BaBar’s approach. This is partic
appropriate for raw data where there is a large amount of data, and one may want to de
the question of disk storage from the actual appearance of the objects in memory. Curren
are able to provide access to the raw data for most of the detector systems, and the st
raw data in Objectivity is just now becoming available.

The basic design of the raw data structure can be seen in the class diagram of Fig

Figure 5: Class diagram of the raw data structure

Here the raw data, or digits, are always organised by a “containing” detector element. In th

of the pixel detector example above, a detector element corresponds to a single wafer3. Each
detector element is “Identifiable”, i.e. provides an identifier, to allow for both identification
data selection. The digit objects are accessed via the detector element objects using S

iterators4. This design allows digits to provide not only “raw” data, e.g. strip or pixel num
but also more useable “physics” quantities, e.g. local and global position or drift time and
distance. The transformation from “raw” to “physics” quantities is provided by a dete
description object and a detector position object attached to the detector element object
the former knows, for example, about changing channel numbers to local positions and th
can be used to transform to global coordinates. Finally, this design allows the flexibil
adjust the amount of physical memory storage consumed by the digit, which can be imp
in ATLAS.

The detector elements are organised into a tree structure which is connected to a
object. The user interface provides “collector” objects which visit this structure and co
either detector element objects or the digit objects themselves. Clients may select subse
detector element or digit objects using the above-mentioned range objects. This wo
typically useful when reconstructing within a roads.

3 The “granularity” of a detector element may of course vary with the detector system. It may correspo
whole multi-layer chamber or just part of a single layer. The key criteria here is to identify the granularity

DetectorPosition

Point3D center()
Transform3D transform()

DetectorElement

Identifier identify()
iterator digits_begin()
iterator digits_end()

DetectorDescriptor

Digit

Identifier identify()
Point3D position()
float response()

.g. raw
-oriented

r, D0

ata
by the

 with
 little
ystem

. They
st beam
ey did
ich is

nts.
, we
eneral

ystem.
ements
The question of the separation of the transient and persistent parts of a event has not yet
been fully answered within ATLAS. For the raw data, we have chosen to do so for the following
reasons:

1. can have multiple data sources - e.g. Zebra/Objy,

2. memory/disk space considerations can be treated separately, and

3. eventually, the online filter farm (3rd level trigger) will want to use offline code and thus
need to use the same event interface to access the raw data coming out of the trigger.

Although partially answered, the question of transient/persistent separation must be treated for
the full event data.

Concerning the overall event design, we are only beginning to attack this question. Some
of the basic questions that need to be answered are:

1. Who sees persistent objects? Can one hide the persistent/transient difference?

2. How do clients select/identify/navigate to objects in events?
Our basic ideas are similar to BaBar’s - storage according to the various levels of detail, e
data, event summary data and analysis object data, and perhaps access via physics
groups, e.g. particles, tracks, EM clusters, etc. Some of the basic considerations are:

1. avoid schema evolution of the basic event model

2. provide a simple API

3. allow mapping to the event filter where only a transient event model will exist.
We will answer these questions with the help of the work and examples of RD45, BaBa
and others.

Finally, we plan to “exercise” the use of Objectivity by writing ~1 TB of Geant3 raw d
and analysis “ntuples” into a system with 100 GB of disk and staging to tape via HPSS
end of the year. This will allow us to make various benchmarks using ATLAS data.

3 Test beam use of Objectivity

The first ATLAS experience with using Objectivity in test beams has come this year
the Tile Calorimeter test beam. In only a six-week period, a group of about two people with
experience with Objectivity moved their C/Zebra-based event store to an object-oriented s
using Objy V5. They made no major redesign of the basic C-structures of their events
wrote >100 GB of event data in parallel to the standard Zebra system during a summer te
period. The reconstruction programs are being developed since the data-taking. Th
redesign their calibration system - they developed an hierarchical detector model wh

derived from a cabling description5 and is used to access different sets of calibration consta
Other groups will begin using Objectivity for next year’s test beams. In particular

would like to try out the use of BaBar’s Conditions database which is being adapted for g
use by RD45.

4 Detector construction measurements

A small project has been started for the construction phase of the Pixel detector s
They would like to maintain in a database the processing history and the set of measur

performed on each device. They would also like to have a web interface to the information.
They are using the Objectivity Java binding. They have completed their design and are working
on the implementation. Their first tests will be in October 1998.

5 Summary

ATLAS has made good progress in providing access to the detector description and raw data for
object-oriented offline developments. We are just now beginning to see the first use of these
new elements. We are still early in developing our expertise with Objectivity with ATLAS, but
this is growing rapidly.

6 References

[1] E. Gamma, et al., Design Patterns: Elements of Reusable Object-Oriented Software, Add-
ison-Wesley

	Overview of ATLAS Database Activities
	1 Introduction
	2 Offline: near term goals
	2.1 Offline: Detector Description domain
	Figure 1: Detector description database is the primary source for all applications.
	Figure 2: Overall architecture of the detector description domain
	Figure 3: Logical decomposition of the ATLAS pixel detector
	Figure 4: Identifying a set of pixels with a single range object

	2.2 Offline: Event domain
	Figure 5: Class diagram of the raw data structure
	1. can have multiple data sources - e.g. Zebra/Objy,
	2. memory/disk space considerations can be treated separately, and
	3. eventually, the online filter farm (3rd level trigger) will want to use offline code and thus ...
	1. Who sees persistent objects? Can one hide the persistent/transient difference?
	2. How do clients select/identify/navigate to objects in events?
	1. avoid schema evolution of the basic event model
	2. provide a simple API
	3. allow mapping to the event filter where only a transient event model will exist.

	3 Test beam use of Objectivity
	4 Detector construction measurements
	5 Summary
	6 References
	[1] E. Gamma, et al., Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley

