Some Definitions

- $N^{S}=$ Detected pairs with single layer target.
- $N^{M}=$ Detected pairs with multi-layer target.
- $N^{B}=$ Background pairs.
- $N^{C}=$ Coulomb pairs.
- $N^{N C}=$ Non-Coulomb pairs.
- $n_{S}^{A}=$ Broken atoms in single-layer.
- $n_{M}^{A}=$ Broken atoms in multi-layer.
- $N^{A}=$ Created atomic pairs.

Some Relations

- The number of background pairs (Coulomb and Non-Coulomb) is the same in the two targets.
- Of course: $N^{B}=N^{C}+N^{N C}$
- The number of atomic pairs is also the same in the two targets.
- The number of broken pairs differs and are given by:

$$
\begin{aligned}
& n_{S}^{A}=P^{S} N^{A} \\
& n_{M}^{A}=P^{M} N^{A}
\end{aligned}
$$

where P^{S} and P^{M} are the breakup probabilities of pionium in the single and multi layer targets respectively.

$$
\begin{aligned}
& \text { The Main Relation } \\
& N^{B}=\frac{P^{S} N^{M}-P^{M} N^{S}}{P^{S}-P^{M}}
\end{aligned}
$$

can be easily proven if we consider:

$$
\begin{gathered}
N^{S}=N^{B}+n_{S}^{A}=N^{B}+P^{S} N^{A} \\
N^{M}=N^{B}+n_{M}^{A}=N^{B}+P^{M} N^{A}
\end{gathered}
$$

The relation can be equivalently expressed as:

$$
N^{B}=N^{S}-\frac{P^{S}}{P^{S}-P^{M}}\left(N^{S}-N^{M}\right)
$$

or

$$
N^{B}=N^{M}-\frac{P^{M}}{P^{S}-P^{M}}\left(N^{S}-N^{M}\right)
$$

The Main Idea

P^{S} and P^{M} depend on the lifetime and we ignore their value. However, we can use some test values P_{0}^{S} and P_{0}^{M} and compute the errors. As an example we have used:

$$
\begin{aligned}
P_{0}^{S} & =P^{S}(\tau=3 f s)=0.454 \\
P_{0}^{M} & =P^{M}(\tau=3 f s)=0.231
\end{aligned}
$$

The Systematic Error

We want to study wether:

$$
N_{0}^{B}=\frac{P_{0}^{S} N^{M}-P_{0}^{M} N^{S}}{P_{0}^{S}-P_{0}^{M}}
$$

is a good estimate of N^{B}.
The systematic error would be:

$$
\begin{aligned}
N^{B}-N_{0}^{B} & =\left(N^{S}-N^{M}\right) \times \\
& {\left[\frac{P_{0}^{S} P^{M}-P_{0}^{M} P^{S}}{\left(P^{S}-P^{M}\right)\left(P_{0}^{S}-P_{0}^{M}\right)}\right] }
\end{aligned}
$$

if we asume $N^{N C} \approx 0^{a}$ and consider $N^{A}=k N^{C}$ we have $\left(N^{C}=N^{B}\right)$:

$$
\frac{N^{B}-N_{0}^{B}}{N^{B}}=k \frac{P_{0}^{M} P_{0}^{S}-P^{M} P^{S}}{P_{0}^{S}-P_{0}^{M}}
$$

a Non Coulomb pairs are 2% of the background in the $Q<2 \mathrm{MeV} / \mathrm{c}$ region.

The Statistical Error

The Statistical Error in the calculation of background with the main Formula is given by:

$$
\sigma_{N^{B}}=\frac{\sqrt{\left(P^{S}\right)^{2} N^{M}+\left(P^{M}\right)^{2} N^{S}}}{P^{S}-P^{M}}
$$

Notice that $P^{M}<P^{S}$, in particular, around $\tau=3 \mathrm{fs} P^{M} \approx P^{S} / 2$. This means that the statistics in the multi-target layer contributes larger to the statistical error. In particular, if we asume $N^{N C} \approx 0$ then:

$$
\begin{aligned}
& \frac{\sigma_{N^{B}}}{N^{B}}=\frac{1}{\sqrt{N^{B}}} \times \\
& \frac{\sqrt{\left(P^{S}\right)^{2}+\left(P^{M}\right)^{2}+k P^{S} P^{M}\left(P^{S}+P^{M}\right)}}{P^{S}-P^{M}}
\end{aligned}
$$

Two Cases

We have analyzed two particular cases in the $F<2$ region ${ }^{a}$:

- $N^{C}=15000$, acumulated statistic of the single layer target 2001.
- $N^{C}=5500$, acumulated statistic of the multi-target layer 2002.

We have used $k=0.69$ for the k factor.

Errors τ	Stat. $(3 f s)$	Sys. $(2.4 f s)$	Sys. $(3.6 f s)$
$N^{C}=15000$	2.0%	1.9%	-1.7%
$N^{C}=5500$	3.4%	1.9%	-1.7%

aThe region with atomic pairs contamination.

Errors as a Function of τ

Second approach

We have started a second approach to the Main Formula by analyzing the magnitude:

$$
\begin{aligned}
& \delta P^{1}=\frac{N^{S}-N^{M}}{k N_{0}^{C}} \\
& \quad=\frac{\left(P_{0}^{S}-P_{0}^{M}\right)\left(N^{S}-N^{M}\right)}{k\left(P_{0}^{S} N^{M}-P_{0}^{M} N^{S}\right)}
\end{aligned}
$$

Second approach (2)

We have not computed the possible transmision of errors, so, the result should be considered as preliminar.

Errors	$\begin{gathered} \text { Sys. } \\ (2.4 f s) \end{gathered}$	$\begin{gathered} \text { Sys. } \\ (3.6 f s) \end{gathered}$
2nd app.	-0.36\%	0.34\%

