Some Definitions

- $N^S = \text{Detected pairs with single}$ layer target.
- N^M = Detected pairs with multi-layer target.

• $N^B = \text{Background pairs.}$

- $N^C = \text{Coulomb pairs.}$
- $N^{NC} =$ Non-Coulomb pairs.
- $n_S^A = Broken$ atoms in single-layer.
- $n_M^A = \text{Broken atoms in multi-layer.}$
- $N^A = Created$ atomic pairs.

Some Relations

The number of background pairs (Coulomb and Non-Coulomb) is the same in the two targets.

• Of course:
$$N^B = N^C + N^{NC}$$

- The number of atomic pairs is also the same in the two targets.
- The number of broken pairs differs and are given by:

$$n_S^A = P^S N^A$$
$$n_M^A = P^M N^A$$

where P^S and P^M are the breakup probabilities of pionium in the single and multi layer targets respectively.

The Main Relation

$$N^B = \frac{P^S N^M - P^M N^S}{P^S - P^M}$$

can be easily proven if we consider:

$$N^S = N^B + n^A_S = N^B + P^S N^A$$

$$N^M = N^B + n^A_M = N^B + P^M N^A$$

The relation can be equivalently expressed as:

$$N^B = N^S - \frac{P^S}{P^S - P^M} (N^S - N^M)$$

or

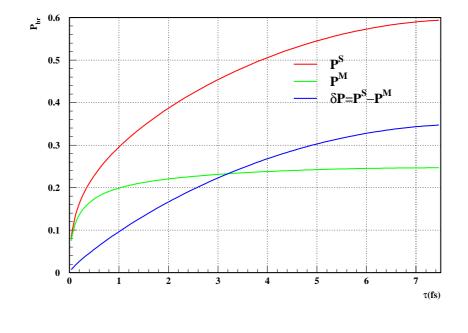
$$N^B = N^M - \frac{P^M}{P^S - P^M} (N^S - N^M)$$

The Main Idea

 P^{S} and P^{M} depend on the lifetime and we ignore their value. However, we can use some test values P_{0}^{S} and P_{0}^{M} and compute the errors. As an example we have used:

$$P_0^S = P^S(\tau = 3fs) = 0.454$$

 $P_0^M = P^M(\tau = 3fs) = 0.231$



The Systematic Error

We want to study wether:

$$N_0^B = \frac{P_0^S N^M - P_0^M N^S}{P_0^S - P_0^M}$$

is a good estimate of N^B . The systematic error would be:

$$N^{B} - N_{0}^{B} = (N^{S} - N^{M}) \times \left[\frac{P_{0}^{S} P^{M} - P_{0}^{M} P^{S}}{(P^{S} - P^{M})(P_{0}^{S} - P_{0}^{M})} \right]$$

if we asume $N^{NC} \approx 0^{\text{a}}$ and consider $N^A = k N^C$ we have ($N^C = N^B$):

$$\frac{N^B - N_0^B}{N^B} = k \frac{P_0^M P_0^S - P^M P^S}{P_0^S - P_0^M}$$

^aNon Coulomb pairs are 2% of the background in the Q < 2MeV/c region.

The Statistical Error

The Statistical Error in the calculation of background with the main Formula is given by:

$$\sigma_{N^B} = \frac{\sqrt{(P^S)^2 N^M + (P^M)^2 N^S}}{P^S - P^M}$$

Notice that $P^M < P^S$, in particular, around $\tau = 3fs \ P^M \approx P^S/2$. This means that the statistics in the multi-target layer contributes larger to the statistical error. In particular, if we asume $N^{NC} \approx 0$ then:

$$\frac{\sigma_{N^B}}{N^B} = \frac{1}{\sqrt{N^B}} \times \frac{\sqrt{(P^S)^2 + (P^M)^2 + kP^S P^M (P^S + P^M)}}{P^S - P^M}$$

Two Cases

We have analyzed two particular cases in the F < 2 region ^a:

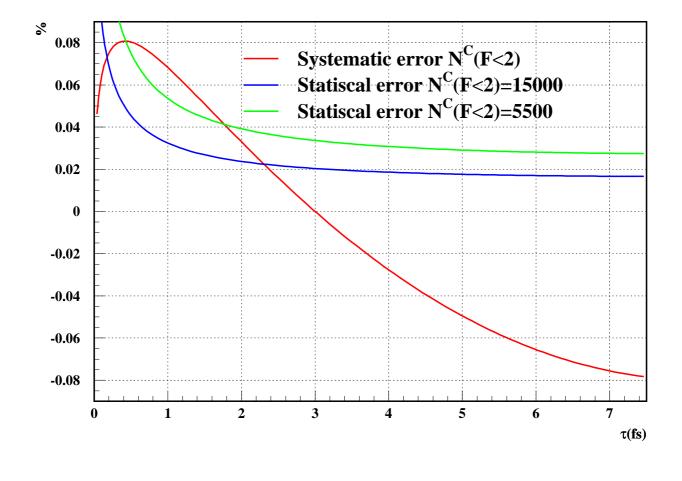
- $N^C = 15000$, acumulated statistic of the single layer target 2001.
- $N^C = 5500$, acumulated statistic of the multi-target layer 2002.

We have used k = 0.69 for the k factor.

Errors	Stat.	Sys.	Sys.
au	(3 <i>fs</i>)	(2.4 <i>fs</i>)	(3.6 <i>fs</i>)
$N^{C} = 15000$	2.0%	1.9%	-1.7%
$N^{C} = 5500$	3.4%	1.9%	-1.7%

^aThe region with atomic pairs contamination.

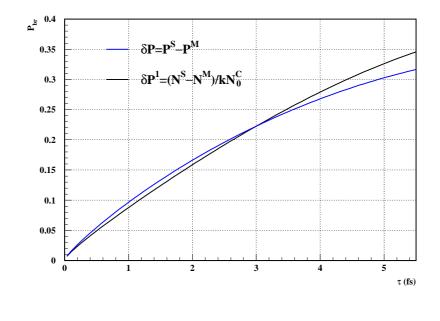
Errors as a Function of τ



Second approach

We have started a second approach to the Main Formula by analyzing the magnitude:

$$\delta P^{1} = \frac{N^{S} - N^{M}}{kN_{0}^{C}}$$
$$= \frac{(P_{0}^{S} - P_{0}^{M})(N^{S} - N^{M})}{k(P_{0}^{S}N^{M} - P_{0}^{M}N^{S})}$$



Second approach (2)

We have not computed the possible transmision of errors, so, the result should be considered as preliminar.

Errors	Sys.	Sys.
τ	(2.4 <i>fs</i>)	(3.6 <i>fs</i>)
2nd app.	-0.36%	0.34%

