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A precise calculation of pionium breakup probability (Ps.) in a
target with a given Z is performed by solving the evolution equation
system with a Monte Carlo method. The matrix elements of this
system are calculated in the Born approximation making use of the
dipole form factors. The results obtained are compared with those
of the DIRAC technical proposal.

1 Introduction

The DIRAC experiment is dedicated to measure the pionium lifetime. In order
to reach this goal a spectrometer is working at CERN specially designed to
detect low relative momentum (g) #*7~ pairs. The yield of pair production
at ¢ <1 MeV/c is the physical signal from which we can obtain the breakup
probability (Ps.) for pionium in a thin target foil (of the order of tenths of
millimetre thickness). The breakup probability is a unique function of the
pionium 1s state lifetime 7 which we discuss in detail in this report. The
lifetime measurement requires a precise knowledge of P, as a function of 7.
We have used a Monte Carlo technique to evaluate this function, as we describe
in section 3, and we have checked the compatibility of this procedure with the
results obtained in the technical proposal [1] and in [7] by L.G. Afanasyev.

2 Atomic production

The mechanism of pion atom production is the Coulomb interaction between
777~ pairs in the reaction p+ A4 — 777~ 4 X reaction [3]. The role of the 7t
7~ double inclusive production as the source of pions leading to a bound state

of quantum number nlm is explicitly expressed in the pionium production
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Fig. 1. Production mechanism of pionium.

cross-section:

dUA(n l,m) E do?
— 0 = (27 = [ (0) P —— 1
dP ( ﬂ-) M |1/} 1 ( )| dpﬂ-+ dpﬂ-— ? ( )

where the superscript 0 in the double inclusive cross-section indicates the ne-
glect of Coulomb final state interactions and the subscript s takes into account
that only short-lived sources can yield pion atoms. This double inclusive cross-
section is evaluated for pions at equal momenta (p,+ = p,- = P/2). Hence,
since hydrogen-like wave functions at origin verify:

0 if1#£0,
[$m(0)[* = , (2)
L if1=0;1

armnd

we see that only s states are created, with rate proportional to 1/n®.
2.1 A direct estimation of pionium spectrum from experimental data.

As explained in appendix A, equation (1) can be rewritten in spherical coor-
dinates as:

do?(n,1,m)
dPde

26(271')3 E do?

— n 0 2 s
¥ (0)] M, PP, dPdfdPdé’ (3)

where the azimuthal angle dependence can be suppressed. This means that
the atom spectrum can be obtained once the w7~ double inclusive cross-
section of 77~ pairs from short lived sources is known. We have developed a
procedure to make an estimation of this double inclusive cross-section making
use of the DIRAC experimental data.

Hence we have chosen particle pairs within a time window of 0.5 ns. These
pairs have a high probability of being emitted from the same proton —nucleus

! In this equation a, is Ay, Bohr radius: a, = ﬁ = 387fm.
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Fig. 2. Comparison of real pairs momentum distribution weighted with E/PP;. Two
different cases are shown, the solid line refers to low relative momenta and the
dashed line to high ones. Data corresponds to the Nickel target.

interaction. We then calculate the momentum spectrum of these pairs (|p; +
p2|) weighted with the E/ PP, factor? for those pairs with relative momentum
lower than 5 MeV/c and compared it with the spectrum for those pairs with a
relative momentum higher than 5 MeV/c (see Fig. 2). This comparison shows
that the pion double inclusive cross-section does not depend strongly on the
relative momentum and that an estimate of the spectrum at zero relative
momentum can be made with such a cut®. In particular, the influence of
Coulomb interaction in the |p; + pa| spectrum is very small, and can be
neglected.

However, since pionium is created only from short-lived sources of 777~ pairs
and all sources (short-lived and long-lived) are present in the real data, we need
to evaluate the ratio between both sources. As explained in appendix B this
ratio was obtained by making use of the FRITIOF hadron Monte Carlo and it
can be seen in Fig. 3. The real pionium spectrum is obtained multiplying the
solid spectrum of Fig. 2 times the spectrum of Fig. 3. The resulting distribution
is shown in Fig. 4.

2 The resulting distribution would be proportional to:

do
dPdodPds dé (4)

E
Spect fi DIRAC dat
pectrum from ata x / 22

3 This study is only preliminary and a deeper analysis should be made.
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Fig. 3. Ratio of #tn~ pairs from short-lived sources in Nickel.
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Fig. 4. Pionium spectrum compared with the weighted double inclusive cross-section.
Both spectra from a Nickel target.

With the initial spectrum of pionium, the relative weight 1/n® for the initial s
bound states, and considering that the atoms are randomly created all along
the target width*® we have all the ingredients for the description of the initial
parameters of atoms in the creation stage of our Monte Carlo method.

4 This is because the nuclear interaction length is much larger than the width of
the targets of DIRAC experiment.



3 The atom transport through the target

Once the atoms have been created they propagate inside the target material.
This propagation is determined by pionium interactions with target nuclei and
annihilation probability. Collisions with orbital electrons can be neglected [6].

After a collision with a target nuclei, the atom may excite into a bound
state (the corresponding cross-section for these events indicated by the symbol

Uzllf;m/) or ionize into the continuum (for which the cross-section symbol will
be 0" ). The total electromagnetic cross-section interaction is related to the

discrete-discrete transitions and the ionization cross-section by:

co n'—1
13 1
o = ZZZJrE: > E: T - (5)
n'=0 1'=0 m'=—

The electromagnetic collisions will therefore compete with the annihilation
process via the 77 + 7~ — 7° + 7% channel.

The total probability of pionium-target collisions is well described by the first
Born approximation total cross-section [6] [4] given by:

total nlm
R / (@) (1~ Fi(a)ada, (6)

which quantifies the probability for a pionium state nlm to undergo an elec-
tromagnetic interaction with a target nuclei.

In particular the probability of discrete-discrete excitation (nlm — n'l'm’) is

n'l'm’ <g>
nlm 9

In equations (6) and (7) q is the momentum transfer to the scattered atom, 3

its velocity, and the functions F:l‘hlnm (q) are called atomic form factors which

given by the cross-section [4]:

oo L= (=) F o e
ot = 22U o)
0

2

qdq (7)

are defined as:

/l/ /

Fnm (@) = [ i (2)e % nim(x)dx ®)

where the ¥, (r), Ynm/(r) are the hydrogen-like wave functions of the atom
in the initial and final states respectively.



These form factors have been calculated analytically [6] and we have incorpo-
rated the corresponding expressions into our Monte Carlo code.

The form factors between discrete states and continuum states have not been
calculated in such a useful way®. It has been only recently that direct re-
sults of ionization cross-sections have been obtained and the analysis of direct
calculations for the ionization probabilities will be published shortly [9].

The function U (q) is the Fourier Transform of the Moliere parametrization of
the Thomas-Fermi potential U(r):

) 0.35 0.55 0.10
U(q) =872 + + Era; 9
(@) (q2+ﬂ% &+ B q2+ﬂ§) (Frt) ®)
Z
U(r) =5 (03577 +0.55¢ " +0.10e ") B, ° (10)
T
with

Br=20 g = 4B s =50, (11)

where ag = .529107'° m is the Bohr radius of Hydrogen atom. Of course this
kind of parametrisation allows us to change easily the target material.

Once we have been able to calculate the interaction cross-sections we will try
to solve the differential equation system that describes the evolution of the
atoms in the target.

dpnlm T'm!
= D Pavme(8), (12)

/l/m/

where p,;,, are the different states population, and s is the distance travelled
by the atom in the target. The a™L™
per unit of length and are dlrectly related to the transition cross-sections by:

are the different transition probabilities

'l'm!
n'l'm! nm pN()
a'nlf’n = : A ? (]‘3)

5 Actually there is a complete calculation of hydrogen-like form factors in [10] but
they are described in a group theory formalism which makes it unavailable for
practical uses.

6 E, is the Rydeberg energy for A,, atom, which corresponds to 1.86 keV



if nlm # n'l'm’ and by:

g _U,f:;,fsleo B 2my [ PcTpgo for nS states, (1)
nlm —
A 0 otherwise;

n'l'm’

if we talk about a diagonal element of the a};,’

matrix. In these equations p
is the density of the target material, A its atomic weight and Ny the Avogadro
number. In equation (14) P is the atom momentum, 7, is the lifetime for the

corresponding nS state, c is the speed of light and m, the pion mass.
The lifetime for the different s states of pionium is related by [1]:

Tnoo = 7'100713 (15)
where 199 1s the lifetime of 1s state. This lifetime is the unknown we shall

measure in DIRAC and which we will relate to a direct measurable magnitude,
the breakup probability.

As a first corollary of equation (14) we can calculate the mean free path ()
of pionium in the target:

11 1 oplpNy Prom H1=0; 16
Y m w4 T (16)
anh int 0 Other case.

So, the probability for an atom to travel a distance z inside the target and
then interact in a region of width dz is given by:

1

= Xe_§dw, (17)

p(z)dz

which is the equation in which we will base the transport stage of our Monte
Carlo calculation of the breakup probability.

Some calculated values of mean free paths are given in Table 1.

4 The Monte Carlo algorithm.

Once we can simulate the creation and transport of pionium in the target
we will be able to solve the equation system (12) by means of the following
algorithm:



nlm A nlm A nlm A

100 | 1.06 || 320 | 1.50 || 42£2 | 0.32
200 | 2.02 || 3242 | 0.88 || 43£1 | 0.59
2141 | 2.95 || 400 | 0.33 || 43£3 | 0.39
300 | 0.72 || 4141 | 0.30 || 500 | 0.18
314+1 | 0.71 || 420 | 0.53 || 141 | 0.16

Table 1
Mean free path, in pum, for some pionium bound states. Lorentz y = 21/2.

— We take the atom in its initial state specified by the values of P; and R,
as described in Section 2, and generate a free path, z, according to equation
(17).

— We displace the atom the length x:

Ri_|_1 = CBE + ].:{z (18)
P;

— We check that Z;;; is less than the target thickness and, if this is true,
we choose between all the possible final states, either annihilation, ioniza-
tion or discrete-discrete transition between states according to the relative
probabilities given by ®:

n'l'm’
Tnlm pNAV
T 19
CA (19)
for discrete-discrete transition,
o pNa
= 20
CA (20)
for ionization and,
M
21
CPTnlm ( )

for annihilation (where P is the atom momentum).

— Annihilation and ionization are final processes, whereas if we have a transi-
tion between bound states the atoms continue to travel and we must start
again the evolution procedure.

The results of the Monte Carlo program can be obtained in an evident and
natural way. From an initial sample of atoms we can calculate how many of

" The subscript i refers to the step number in the evolution algorithm.

8 (¢ — “uimPNav M

A —I— PTnl'm.




them ionize, and hence the breakup probability (P, ), how many are annihi-
lated, and hence the annihilation probability (P,,s) and how many leave the
target in a discrete state, and hence the discrete probability (Pys.). In any of
these three cases we can extract relevant information like the atom coordi-
nates, its final state before ionization or annihilation or the state in which it
enters in the vacuum after the target.

Generation of transferred momentum.

— L

e — | Anihilation o 1
-1 | procedure T

Free path generation and evolution. Chooseof final state.

= lonization

procedure

Fig. 5. Evolution algorithm.

5 Some comments on the calculation procedure.

Two main difficulties must be avoided in order to make a precise calculation
of the breakup probability (P;.). The first one refers to the absence of a direct
calculation of ionization cross-sections. The second problem is linked with the
fact of considering only a finite number of states involved to solve the system
of equation (12). In all the results that will be presented throughout this
note only those states with principal quantum number n < n,,4, have been
considered. The value of n,,4, can be obviously increased but, of course, some
cut must be finally applied. Therefore the result on P, must be obtained in
some indirect way which will be described below.

As a first consequence of these problems we will not be able to make a direct
calculation of the amount of ionized atoms. Since the best approach for us to
ionization cross-sections is:

n'=col'=n'—1 m'=l'

ol = glotel %~ E 3o oo, (22)

n'=0 Il'= m/==1'

and as we can only perform finite sums we are forced to split this equation as:

n'=cc l'=n'"—-1 m'=l' n' =nmaz I'=n'—1 m/'=l'
zon n'l'm' __ _total n'l'm’
Tnlm + z : z : z : nlm = Oplm — z : z : z : Tnlm
n' =nmaz =0 m/==1l' n'=0 =0 m/=-1'



Tail or Ionized atoms Annihilated atoms Surviving atoms
Amas 7 8 9 10 7 8 9 10 7 8 9 10
n= 97147 96736 95890 95244 488592 488109 488002 488086 100172 99444 98535 98015
n=2 51180 49711 48578 477857 4972 4925 4938 4851 19610 19492 19549 19148
n=3 34542 32234 30976 30128 254 238 225 258 6841 6966 6804 6710
n=4 30767 27479 25318 24081 25 27 33 32 3244 3199 3212 3217
n=2=5 33750 27077 23897 21667 9 11 8 4 1824 1846 1813 1838
n==6 43580 30177 24371 20996 3 2 1 1 1209 1115 1168 1121
n=17 81261 39784 27829 22496 1 1 2 1 1080 759 732 714
n=3=8 69962 35914 25670 1 709 566 518
n=29 61134 32990 504 400
n =10 - - - 53483 304
Total 372227 373160 373907 374512 493856 493313 493210 493232 133980 133530 132883 131985

Table 2

Results for an initial sample of 10® atoms. The principal quantum number n, before
the atom becomes into the indicated final situation, is indicated. A Nickel target of
95 um and non-monochromatic pionic atoms were considered.

This relation means that we will not be able to distinguish between those
atoms which are ionized and those that sufler a transition between a discrete
state involved in the calculation (hence with n < nn,..) and a discrete state
with n > n,,4.. So one additional hypothesis on the calculation of P, the
probability for the atom to remain in a discrete state with n > n,,,, after the
target, will be needed to perform the P, calculation. This will be discussed
in the next section.

Considering that the evolution of any atom is finished if the atom is ionized,
annihilated, if it is excited into a state with n > n,,4, or if it leaves the target
in a discrete state with n < n,,4,. Hence the probabilities for any of these final
events are related by:

]-:Pbr—I'Panh—l'Pdsc—l'Ptail, (24)

therefore the limitation on the direct calculation of P,. can be avoided if we
transform this equation into:

Pb,,. =1-— (Panh ‘I‘ Pdsc —I' Ptail)7 (25)

but the reliability on P,,; and on Pj,. must be proved.

To test the stability of the obtained results on Py, and P,,; we have filled
Table 2 for several calculations in which n,,,, was scanned from 7 to 10.

From Table 2 we can conclude that P,,; is almost unchanged with n,4..
Furthermore the number of annihilated atoms from states with n > 6 is com-
pletely negligible. The same conclusion can be made on discrete state atoms.
The result becomes stable for those states with n < (nmee — 2).

10
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Fig. 6. Fzample of a tail fit result. A Nickel 95. pym width target and a lLifetime of
3. fs for pionium were considered.

Therefor the calculation of P,,; is the remaining problem to be solved and to
this task we dedicate the next section.

6 Tail analysis.

As explained above the amount of atoms excited to discrete states with n >
Tmaz, the so called discrete atoms tail, are involved ? in the calculation of P,.

In order to calculate the total amount of atoms in this tail and, as suggested in
[1], we have fitted the results for Pys.(n) for n = (Rmee —3) and n = (Rmee — 2)
to an expression of the type:

a b
Pdsc(n) == E + 5 (26)

n

Hence, we have estimated the value of P,; making the summation of (26)
from n = (Nmez — 1) to co. Fig. 6 shows the fit for the results of Table 2.

® Meanwhile the tail for annihilated atoms is negligible as can be seen in Table 2

11
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Fig. 7. Comparison of Py, as a function of lifetime for monochromatic and
non-monochromatic atoms. The upper curves correspond to a 22.3 pm Pt target
and the lower to a 95. um Ni target. the monochromatic samples were produced
with 4.160 GeV/c in the case of the Nickel target and 4.233 for the Platinum target.

7 Results on breakup probability.

7.1 Results on Py, (7).

The initial spectrum of Fig. 4 was considered to obtain the Py, (7) curve of Fig.
7 for a Nickel target of 95 pm width. The resulting curve is compared with
the result for monochromatic atoms at the average momentum of the same
spectrum (4.233 GeV/c). The observed differences are very small (within 1%)
and become slightly larger as 7 increases.

The same procedure was applied for a Platinum target of 22.3 pm width. In
this case the mean momentum of pionic atoms was found to be 4.160 GeV/c.

12
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Fig. 8. Comparison of results. The solid lines are those of Ref. [7] and the points are
those calculated with the Monte Carlo method. Monochromatic atoms of 4.7 GeV/c
momentum were considered.

7.2  Some comparisons.

In Fig. 8 the obtained results on P, are presented for several targets. The
comparison with the calculations of [7] which are displayed as solid lines show
an excellent agreement within 1%. In Table 3, P,,, the breakup probability
and

1 dF,,

OB, =
b Pbr dr

(27)

are compared between this work and Ref. [7]. This magnitude (6P, ) has a
large relevance because it is the maximum allowed uncertainty for a P, mea-
surement to reach a 10% precision in the measurement of pionium lifetime.
Also AP,,, the difference between the results on Py, for [7] and this work is
shown in Table 3.

13



Z | Sum | Py | Py Ref. [7] 5P, 8Py, Ref. [7] AP,
Be | 04 | 2585. | 0.132 0.133 3.21072 3.21072 1.1073
Al | 13 | 654.2 | 0.222 0.222 3.610°2 3.71072 <1.1073
Ti | 22 | 263.1 | 0.326 0.325 4.01072 411072 -1.103
Fe | 26 | 129.9 | 0.432 0.435 3.51072 3.81072 3.107%
Ni | 28 | 104.3 | 0.470 0.471 3.31072 3.51072 1.1073
Cu | 29 | 105.2 | 0.465 0.470 3.41072 3.51072 5.1073
Mo | 42 | 70.2 | 0.537 0.541 2.8 1072 3.01072 4,102
Ta | 73 | 30.0 | 0.666 0.672 1.41072 1.71072 6.1073
Re | 75 | 23.3 | 0.694 0.699 1.21072 1.41072 5.10-3
Pt | 78 | 22.3 | 0.699 0.704 1.1 1072 1.3 1072 5.1073

Table 3

Comparison of results. § means target thickness.
8 Conclusions.
A prediction for the P, (7) function for DIRAC experimental conditions has

been made. The stability of this result is better than 2% for the different
variations discussed throughout the note.
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A Calculation of pionium production cross-section.

In this appendix we are going to describe how to obtain equation (3) starting
from equation (1).

Let us take the result:

do4(n,l,m) ;s F , da?
—ap - g (O (A.1)

if we now consider spherical coordinates this equation is transformed into:

14



1 do4(n,l,m)

A.2
P?sin(§) dPdode (A-2)

E 1 1 do?

2 3 i 0 2 s
(27) My [trim(0)) P2y sin(6,+) p2_sin(0,-) dpr+ db,+ dgpr—dp,-db,-dg,-

but as P = 2p,+ = 2p,- we have that P = 2p,+ = 2p,-, 0 = 6,+ = 0,.- and
¢ = ¢+ = ¢— we can make the corresponding substitutions and obtain:

dUA(n l,m) E 1 do?
7 982 — im0 2 2 A.
dPdbdo (27) MAW} m(0)) P?5sin(0) dPd8d¢pd Pdbd¢ (A.3)

As we have axial symmetry around the ¢ angle we can eliminate the depen-
dence on it and as Psin(f) = P, we can write the desired final expression
as:

do4(n,l,m)
dPde

26(2r)® E do?

- nlm 0 2 .
[$nim (0)] M, PP, dPdddPdéd

(A.4)

The relevance on this expression is given by the fact that it gives us the
weight E /PP, with which we can link an estimation of the double inclusive
cross-section and the pionium production.

B How to obtain the spectrum only from short-lived sources.

As shown in [1], pionic atoms are bound states of 777~ pairs from short-
lived sources. These sources are characterized by a range of pion formation
of 7form ~ 1fm, much less than the Bohr radius of pionium (a, = 387fm).
Hence, as direct data shown in Fig. 2 does not distinguish between those pairs
from short or long lived sources, we need to extract, as a function of the
center of mass momentum, which is the rate of these type of sources from the
complete sample.

Therefore we can define f(P,0) as:

do? do®
2 = f(P,)———
f( ’ ) dpﬂ'+ dpﬂ—

_7s B.1
dpﬂ'+ dpﬂ— ( )

In order to calculate f(P,6) we have considered the relation between semi-
inclusive and inclusive cross-sections given by:

da-g o Fs(pfr‘l' 3 pﬂ'_) da-;l— dO’;
dpﬂ+ dpﬂ— B Oinelastic dpﬂ+ dpﬂ—

(B.2)

15



do® F -)dot do~
o — (p7|'+ ? p7r ) o o (B.3)
dpﬂ+ dpﬂ— Oinelastic dpﬂ+ dpﬂ—

where Fy(pr+,Pr-) and F(pr+,P--) are the correlation functions due only to
strong interaction, for the case of only short-lived sources and for the complete
double inclusive cross-section. The value 6;pciqs505. corresponds to the inelastic
cross-section of hadron production in proton — target collisions.

Hence if we define f7(P,0) and f~(P,6) as:

dot do™t
s — fH(P,8 B4
dpﬂ.+ f ( ? )dpﬂ--l- ( )

do_ do™
— —f(P,0)—— B.5
dpﬂ'_ f ( ’ )dpﬂ_ ( )

we can see that:
Fs(pﬂ+ Pw—) _

P9y =TT 2£Y(P, o P,0). B.6
1) = G s (P6) (5.6

As explained in [1] the correlation functions depend only on the relative mo-
mentum of the pair. Therefore, as p,+ = p,- they remain constant and only
produce an scaling factor between f and f*f~.

Furthermore, as the angular aperture in DIRAC spectrometer is small (about

5 mrad.), we can forget about the angular dependence on 6 in expression (B.4)
to conclude that:

F(P) o fH(P)f(P). (B.7)

We have calculated f* and f~ from the momentum spectra of Fig. B.1 from
the FRITIOF hadronic Monte Carlo. And from this calculation we have ob-

tained the result on f(P) shown in Fig. 3.

C Tabulated results with the comparison results.

In Table C.1 this work results are compared with those of Ref. [1]. These
comparison was also shown in Fig. 8.

16
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Fig. B.1. Spectra for ®+ and w~ for the total yield of these particles and for
short-lived sources only. The spectra refers to a Nickel target and considers DIRAC
geometrical acceptance.
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Z 04 Be 13 Al 22 Ti 28 Ni 78 Pt
thick um 1723.359 436.229 175.401 69.536 14.895
T (fs) This work Ref. [1] This work Ref. [1] This work Ref. [1] This work Ref. [1] This work Ref. [1]

0.5 7.091E-02 7.130E-02 | 1.192E-01 1.196E-01 | 1.622E-01 1.622E-01 | 2.234E-01 2.244E-01 | 4.202E-01 4.253E-01
1.0 8.958E-02 9.039E-02 | 1.488E-01 1.496E-01 | 2.058E-01 2.052E-01 | 2.929E-01 2.941E-01 | 5.217E-01 5.269E-01
1.5 1.024E-01 1.037E-01 | 1.696E-01 1.706E-01 | 2.391E-01 2.384E-01 | 3.437E-01 3.457E-01 | 5.724E-01 5.781E-01
2.0 1.134E-01 1.140E-01 | 1.862E-01 1.878E-01 | 2.664E-01 2.666E-01 | 3.843E-01 3.861E-01 | 6.036E-01 6.089E-01
2.5 1.217E-01 1.226E-01 | 2.019E-01 2.029E-01 | 2.916E-01 2.914E-01 | 4.169E-01 4.186E-01 | 6.238E-01 6.294E-01
3.0 1.287E-01 1.299E-01 | 2.155E-01 2.166E-01 | 3.130E-01 3.134E-01 | 4.440E-01 4.453E-01 | 6.373E-01 6.440E-01
3.5 1.353E-01 1.364E-01 | 2.282E-01 2.293E-01 | 3.338E-01 3.333E-01 | 4.664E-01 4.676E-01 | 6.488E-01 6.549E-01
4.0 1.412E-01 1.423E-01 | 2.391E-01 2.412E-01 | 3.513E-01 3.512E-01 | 4.854E-01 4.866E-01 | 6.582E-01 6.635E-01
4.5 1.466E-01 1.476E-01 | 2.497E-01 2.524E-01 | 3.679E-01 3.676E-01 | 5.010E-01 5.028E-01 | 6.645E-01 6.703E-01
5.0 1.511E-01 1.526E-01 | 2.609E-01 2.629E-01 | 3.824E-01 3.825E-01 | 5.151E-01 5.169E-01 | 6.704E-01 6.758E-01
5.5 1.565E-01 1.572E-01 | 2.704E-01 2.730E-01 | 3.966E-01 3.962E-01 | 5.283E-01 5.292E-01 | 6.753E-01 6.804E-01
6.0 1.599E-01 1.616E-01 | 2.801E-01 2.826E-01 | 4.094E-01 4.089E-01 | 5.382E-01 5.400E-01 | 6.775E-01 6.844E-01
6.5 1.646E-01 1.658E-01 | 2.898E-01 2.917E-01 | 4.207E-01 4.205E-01 | 5.482E-01 5.497E-01 | 6.825E-01 6.877E-01
7.0 1.689E-01 1.698E-01 | 2.973E-01 3.004E-01 | 4.326E-01 4.313E-01 | 5.565E-01 5.583E-01 | 6.853E-01 6.906E-01
7.5 1.727E-01 1.736E-01 | 3.064E-01 3.088E-01 | 4.416E-01 4.414E-01 | 5.638E-01 5.661E-01 | 6.863E-01 6.932E-01
8.0 1.764E-01 1.773E-01 | 3.149E-01 3.168E-01 | 4.515E-01 4.508E-01 | 5.717E-01 5.731E-01 | 6.896E-01 6.954E-01
8.5 1.798E-01 1.809E-01 | 3.218E-01 3.245E-01 | 4.600E-01 4.595E-01 | 5.783E-01 5.795E-01 | 6.917E-01 6.974E-01
9.0 1.827E-01 1.844E-01 | 3.292E-01 3.319E-01 | 4.673E-01 4.677E-01 | 5.833E-01 5.853E-01 | 6.934E-01 6.992E-01
9.5 1.863E-01 1.877E-01 | 3.368E-01 3.390E-01 | 4.760E-01 4.753E-01 | 5.895E-01 5.906E-01 | 6.949E-01 7.008E-01
10.0 1.890E-01 1.910E-01 | 3.423E-01 3.459E-01 | 4.840E-01 4.825E-01 | 5.945E-01 5.955E-01 | 6.960E-01 7.022E-01




