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AbstratThis note desribes a method to determine the momentum resolution Æp of DIRACspetrometer, using only experimental data. The momentum dependene of Æp=p isparametrised with two oeÆients, whih are aurately determined for Ni 2001data, using lambda events at low deay angle. Independently, an assesment of theexperimental error in �+�� opening angle is done, using the measured distanebetween trak extrapolations to the target plane, for prompt pairs. As a result fromboth studies, a Monte Carlo simulation is onstruted where resolution in longitu-dinal (QL) and transvers (QT )ompoments of Q exatly mathes the experimentaldata.
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1 IntrodutionIn the DIRAC experiment, the detetion of pionium signal over the bakgroundCoulomb pairs relies diretly on having a suÆiently good momentum reso-lution in the �+�� enter-of-mass frame , both in the longitudinal(QL) andtransvers (QT ) omponents. At very low pair opening angle �, QL dependsentirely on the magnitude of pion momenta (p) in the laboratory frame. Atlarger values of �, an aurate measurement of QT relies on both � and p reso-lution. Therefore resolution in p plays an essential role for atom pair detetion.As a onsequene of that, it needs to be known preisely in order to performan aurate onvolution of the Coulomb orrelation funtion with experimen-tal resolution , whenever Monte Carlo simulation is used for the analysis ofpionium signal.Beause of the low Q aeptane of the experiment trigger, we annot easilyuse meson resonanes as alibration tools, and the best option has been tosetup a simple lambda trigger. This is ahieved by using an extra vertialhodosope slab lose to the beam, in order to ath the fast proton trak [4℄.The idea of this note is to use the analysis of lambda mass, at low openingangles, to perform a detailed quantitative assesment of momentum resolutionof individual harged traks, as funtion of trak momentum. This resolutionan be ompared with the one obtained from �+�� Monte Carlo, in order tomake sure they are in perfet agreement.Lambda mass M� is determined exatly from measured deay �� (x) andproton (y) momenta and opening angle �, as :M2� = m2p +m2� + 2qm2� + x2qm2p + y2 � 2xy os � (1)By squaring both sides of this equation, one realises it represents a rotatedhyperbola with a physial branh in the positive quadrant of (x; y) plane :m2px2 +m2�y2 + x2y2sin2� ��2xyos� = K2 (2)where �2 =M2��m2p�m2� and K2 = (�2=2)2�m2pm2�. For eah positive valueof �� momentum x, there are two positive solutions for proton momentum y.It is easy to show from the previous expressions that, in the low-angle approx-imation (�2=2� 1), the lambda mass error ÆM� is given by:M�2(ÆM�)2 = ( xx0 � yy0 )2 �y20(Æx)2 + x20(Æy)2� (3)2



where x0 = qm2� + x2 and y0 = qm2p + y2 . Æx and Æy are the �� and protonmomentum errors, respetively. The lowest order �nite angle orretion to thisexpression arises from a term +x2y2�2(Æ�)2. In order to make sure that (3) isexat to the perent level, a suitable upper ut on QT (atually a � ut) mustbe done on lambda seletion. E�etively this is ahieved by QT < 20MeV , aswe shall see later. As expeted, formula (3) depends only on the magnitude oflab-frame momenta x and y.Before we disuss in setion 3 the analysis of single-trak momentum resolutionÆp, we address in the next setion the issue of resolution in the opening angle�, whih is the other key omponent for the measurement of QT .
2 Vertex resolutionWe need a alibration tool that enables us to ontrol the orretness of MonteCarlo desription in � resolution, with high auray. Although we have nosoure of traks impining the detetors with "a priori" known angle, we knowhowever that prompt �+�� pairs are originated from a single mathematialspae point inside the target intersetion with the beam, in the mirometersale.Let us all x1(x2) the �+(��) trak extrapolations to the target plane inthe X-oordinate, and similarly y1(y2) for Y-oordinate. It is lear that theexperimental error in the measurement of single trak stereo angles (in Xand Y projetions) essentially determines the width of �xv = x1 � x2 and�yv = y1 � y2 , whih we all vertex distributions. A detailed analysis of theerror propagation in the upstream arm has been arried out in earlier studies[5℄. In what follows in this note, we have hosen the beam unonstraint �tfor individual traks [3℄. In fat, angle resolution for prompt �+=�� traksdepends on the three following quantities:� MSGC/GEM and SFD intrinsi spae resolution.� detailed material budget in upstream detetor elements, inluding the targetfoil.� lever-arm between MSGC/GEM and SFD detetor planes (52.9 m for Xand 46.6 m in Y, depending slightly on trak on�guration), and distane(in Z-oordinate) between middle point of the ensemble MSGC/GEM - SFDand the target (2.60 m).Whereas the �rst item is essentially momentum independent, the seond de-�nes the e�et of multiple sattering in upstream detetor elements, and it3
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Fig. 1. Distribution of �xv = x1 � x2 and �yv = y1 � y2 for the beam unon-strained �t, as desribed in the text. Slies with minimum and maximum values ofaverage momentum were hosen as referene. Note the non-gaussian nature of thedistribution tails.therefore sales a 1=p (if we neglet logarithmi orretions). The third itemis known with suÆient preision.It is important to note that, aording to this reonstrution method, theerror in trak stereo angles (and vertex resolution) is essentially deoupledfrom the momentum measurement, as a onsequene of having an independentupstream trak. A sensitive way to test the Monte Carlo performane in �resolution is to study the vertex distributions �xv and �yv as funtion ofaverage momentum of �+�� pair, p = (p1 + p2)=2. Histograms were �tted toa gauss funtion in di�erent slies of p, and sigma values in eah projetion4
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Fig. 2. Evolution of vertex resolutions Æxv (a) and Æyv (b) (see the text), as funtionof average �+�� momentum p. Blak dots orrespond to experimental prompt pairs,open squares to the standard Monte Carlo, and open irles to the improved MonteCarlo desribed in the text.(�x and �y) were ompared with those obtained from Monte Carlo. We shallall these values Æxv and Æyv in what follows. The hoie of gaussian �t doesnot presume a fully gaussian behaviour of the distribution tails, neither in thereal data nor in Monte Carlo. It simply means an e�etive way to perform theomparison and its momentum saling, sine it is done onsistently in bothases. In �gure 1 we show the harateristis of some of these �ts. In �gure 2we have plotted the evolution of �tted � values for prompt data, as funtion ofaverage momentum, for both X and Y projetions. Sigma errors are given byone unit variation of the �t �2. We see that resolution improves for inreasingp, as expeted from multiple sattering.5
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Fig. 3. Vertex resolution Æxv (top) and Æyv (botom) as funtion of opening angle �for prompt �+�� pairs (in mrad). Note resolution improves at low angles.A sensible parametrisation of the vertex resolution is given by: (Æxv)2 = �2x +(�x=p)2 where �x depends on intrinsi detetor resolutions in MSGC/GEMand SFD, and on the geometry fators desribed above. �x in turn dependson material thiknesses and average radiation length in all upstream detetorelements, inluding the target foil. A similar parametrisation holds for �yv.Clearly, whereas the �x and �y parameters do not have to be the same, �xand �y must be equal, sine the same detetor elements ontribute in bothprojetions. Therefore we must assume �x = �y = �.By �tting expressions (Æxv)2 = �2x + (�=p)2 and (Æyv)2 = �2y + (�=p)2 to theexperimental data, we an determine aurately the parameters �x, �y, and�. The same proedure an be applied to the Monte Carlo data. In this way,6



we an make a separate tuning of detetor resolutions and average multiplesattering in the Monte Carlo. The results of vertex resolution analysis forthe standard Monte Carlo are represented in �gure 2, along with those of realdata. Also shown in this �gure are the the �tted urves orresponding to theparametrisations disussed above. Parameter values obtained from the �t aregiven in table 1.Table 1Values of �x, �y and � parameters obtained from a simultaneous �t to the mo-mentum dependene of vertex resolution in �gure 2, using the funtions Æxv2 =�2x + (�=p)2 and Æyv2 = �2y + (�=p)2. Results are indiated separately for prompt�+�� data and di�erent Monte Carlo options.�x �y �Prompt data 0.194 � 0.002 0.206 � 0.002 0.576 � 0.004Standard MC 0.136 � 0.002 0.138 � 0.002 0.501 � 0.003Improved MC 0.196 � 0.003 0.213 � 0.003 0.573 � 0.006From the previous analysis we onlude that the standard Monte Carlo di�ersfrom real data in both average detetor resolution and overall multiple sat-tering. Therefore we proeeded to improve the Monte Carlo in two ways: a)to degrade detetor resolutions of upstream detetors by 30%, uniformely. b)to inrease the overall ontribution of multiple sattering by 18%. The result-ing simulation will be refered to as "improved Monte Carlo" in what follows.Figure 2 shows that nearly perfet agreement is found between real data andthis improved version of Monte Carlo, as far as vertex resolution is onerned.We have also studied the behaviour of vertex resolution as funtion of openingangle �, and we have ompared real data with the previous Monte Carlo op-tions. The results are shown in �gure 3. Note that vertex resolution improveswith dereasing values of �, in all ases. As before, very good agreement isahieved with the improved Monte Carlo. The behaviour of Æxv and Æyv asfuntion of � an be understood as a onsequene of the signi�ant angle-momentum orrelation present in �+�� pairs.3 Lambda method desriptionLet us now turn to the evaluation of the momentum resolution outlined insetion 1. We assume that momentum error Æp (for both pion and protontraks) arises from the quadrature of two omponents, aording to expression:(Æp)2 = (Ap)2 + (Bp2)2 (4)7



the �rst term, proportional to p, reeives ontribution from the average ma-terial thiknesses of detetor elements upstream and downstream the magnet.The seond term, proportional to p2, depends on intrinsi traking dete-tor resolutions at both sides of the dipole (drift hambers, MSGC/GEM andSFD). The previous momentum saling arises from the assumption that mul-tiple sattering error sales as 1=p, whereas intrinsi detetor resolutions areassumed to be momentum independent.Beause of the kinematis of lambda deays, the negative pion aquires amomentum lower than the average �+�� prompt traks in DIRAC physistriggers, whereas the proton momentum is higher than this average, as it anbe appreiated in �gure 4. This is the ideal situation to perform a momentumanalysis of the spetrometer resolution, speially if we use low angle pairs,with topology as lose as possible to that of the Coulomb �+�� pairs.The method used is then a maximum likelihood �t to expression (3), using asample of lambda triggers whih ontains not only the signal, but also the non-resonant bakground, due to trigger noise. The desription of the latter by thelikelyhood funtion is important if we want to have a preise determination ofthe A and B oeÆients in (4).For eah event i, a two-dimensional likelyhood funtion was de�ned as a fun-tion of lambda mass Mi (under the p�� hypothesis) and the magnitude pi oftotal lab-frame momentum of the pair. It reads as follows:Li = �PN(pi)SN G(Mi)SG + (1� �)PN(pi)SN PB(pi;Mi)SB (5)where PN(p) = 1+a1p+a2p2+ : : : is an Nth order polynomial in p and G(M)is a gaussian funtion desribing the resonane:G(Mi) = exp � (Mi �M�)22(ÆMi(A;B))2!where the error ÆMi(A;B) is given by expression (3) evaluated at �� (xi) andproton (yi) momenta of event i. The momentum error Æp is given by (4) asfuntion of momentum, with idential A and B parameters for both partiletypes. The polynomial PB(p;M) desribes a linear mass dependene of thebakground: PB(p;M) = 1 + b1M + b2p. The orresponding normalisationintegrals SN ,SG and SB must be alulated for eah parameter hoie, sothat the likelyhood funtion is normalised to unity in the domain (p1; p2) �(M1;M2), where p1;2 are the lower and upper total momentum uts (similarlyM1;2 for the invariant mass). 8



The maximum likelyhood parameters are found to minimise the funtion:� lnL = � NXi=1 lnLi(A;B;M�; �; ak; bl) (6)where N stands for the number of lambda triggers seleted for the �t, andLi is the likelyhood funtion evaluated for event i haraterised by measuredvalues xi,yi,Mi and pi.The overall likelyhood L for N lambda events signi�antly inreases wheneah measured proton momentum yi is replaed, in expression (3) for ÆMi, byone of the hyperboli solutions of equation (2), orresponding to the measured�� momentum xi. This is equivalent to take advantage of the lambda massonstraint in momentum saling of Æp (4), together with the fat that ��momentum has allways the smallest error.A straightforward proedure is to determine �rst the ak and bl oeÆientsof the polynomials, by performing a �t to the bakground only. One theseparameters are �xed, M�,�,A and B an be left free in the �nal �t. All min-imisations were performed by MINUIT program [1℄.
4 Seletion of lambda eventsWe have applied the analysis desribed in the previous setion to the DIRAC2001 Ni target data sample, beause these data have been hosen by the ollab-oration for a �rst determination of pionium prodution and lifetime. Lambdatriggers are routinely taken at onstant fration of total spill rate during nor-mal physis runs, and they have been subjet to the standard alibrations for2001 data periods. Reonstrution was done with ARIANE program [2℄, usingthe full traking proedure option [3℄.The upstream trak pattern reognition was run with the standard parametersused for �+�� prompt pair seletion, whih implies that only traks pointingto the beam intersetion with the target plane within 3 � will be reonstruted,� being trak resolution in the transvers (XY ) plane. No attempt has beenmade to enlarge these pattern reognition windows in the present analysis.Admittedly, this auses a bias in lambda seletion whih has the general trendto enhane the signal at short deay path. We have prefered this option inorder to keep the traking performane as lose as possible to that with �+��pairs, whih we want to evaluate. 9
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The �t results an be visualised using a weighing proedure aording to theL funtion at maximum, applied to random values in the domain (p1; p2) �(M1;M2). This is represented in �gure 9, where the mass spetrum is shownin four slies of lambda momentum, with a superimposed oloured line rep-resenting the �t results. Note the �t parameters are unique, in partiular themass, as given by table 2. The �t projetion onto the p spetrum is shown in�gure 10. The �t quality appears to be good in both projetions.Now we an ompare the previous results with Monte Carlo data [6℄, [8℄. InMonte Carlo, the original trak momentum pg [7℄ is of ourse known "a priori"from the generator, therefore by performing the full ARIANE reonstrutionwe an determine Æp=p as funtion of p for individual traks. This is done bymeans of a gaussian �t to the distribution of observed di�erenes of inverse14
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standard Monte Carlo in order to ahieve a perfet desription of momentumresolution, and at the same time of vertex resolution, aording to the dis-ussion made in setion 4. Only then we an fully trust the Monte Carlo asnormalisation referene for the Coulomb pair bakground, in our searh forpionium breakup signal.In �gure 8 we show again the urve of Æp=p determined from the data (red line),along with the resolution obtained from �+�� Monte Carlo for three di�erentoptions, namely: a) the standard version with default values of material budgetand detetor resolution parameters (blue). b) the improved version desribedin setion 4 (purple). ) the upstream part as before, but downstream multiplesattering inreased by 10% (blak), with standard drift hamber resolution.
6 ConlusionsDIRAC spetrometer, by means of its upstream detetor arm, provides a pre-ise and reliable instrument for analysis of pionium breakup signal. Both mo-mentum and opening angle resolution are analysed in detail in this note usingexperimental data from 2001 run. These results are used to onstrain sen-sitive parameters of the Monte Carlo simulation, like material budget andintrinsi detetor resolutions, separately for upstream and downstream arms.A �nal Monte Carlo simulation is found whih exatly mathes the experimen-tal data. Momentum resolution in DIRAC is found to be aurately desribedby a parametrisation (Æp=p)2 = A2 + B2p2 with A = 0:277 � 0:003 % andB = (2:0+0:3�0:4)� 10�4GeV �1.
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