
DIRAC Note 2004-0627 November 2004Finite{size e�ects on two{particle production incontinuous and discrete spectrumR. Lednick�yJoint Institute for Nuclear Research, Dubna, Moscow Region, 141980, RussiaInstitute of Physics ASCR, Na Slovance 2, 18221 Prague 8, Czech RepublicAbstractThe e�ect of a �nite space{time extent of particle production region on thelifetime measurement of hadronic atoms produced by a high energy beam in a thintarget is discussed. Particularly, it is found that the neglect of this e�ect on thepionium lifetime measurement in the experiment DIRAC at CERN could lead tothe lifetime overestimation on the level of the expected 10% statistical error. Itis argued that the data on correlations of identical particles obtained in the sameexperimental conditions, together with transport code simulation, allow to diminishthe systematic error in the extracted lifetime to an acceptable level. The theoreticalsystematic errors arising in the calculation of the �nite{size e�ect due to the neglectof non-equal emission times in the pair c.m.s., the space{time coherence and theresidual charge are shown to be negligible.1 IntroductionThe determination, on a percent level accuracy, of the breakup probability of the �+��atoms produced by a high energy beam in a thin target is of principle importance for aprecise lifetime measurement of these atoms in the experiment DIRAC at CERN [1-3].This experiment aims to measure the lifetime �10 of the �+�� atoms in the ground statewith 10% precision. As this lifetime of order 10�15s is determined by the probability ofthe annihilation �+�� ! �0�0: 1=�10 � ja00 � a20j2, the DIRAC measurement enables todetermine the absolute value of the di�erence a00�a20 of the s-wave isoscalar and isotensor��{scattering lengths to 5%. This represents a factor of 4 improvement as comparedwith the present experimental data [4] except for the most recent BNL experiment [5].The latter is based on a study of Ke4 decays and yields the statistical error of 6% in a00,though essentially exploiting the theoretical input (the authors estimate the systematicand theoretical error on the level of several percent).It should be stressed that the theoretical prediction for the di�erence a00�a20 depends onthe structure of the QCD vacuum. Thus, on the assumption of a strong quark condensateone has a00 � a20 = 0:374 � 0:006 fm [6]. With the decreasing condensate this di�erenceincreases and can be up to 25 % larger [7]. The DIRAC measurement thus submits theunderstanding of chiral symmetry breaking of QCD to a crucial test.1



The method of the lifetime measurement is based on the production of the �+��atoms in a thin target and subsequent detection of highly correlated �+�� pairs leavingthe target as a result of the breakup of a part of the �+�� atoms which did not decaywithin the target [8]. Clearly, the breakup probability is a unique function of the targetgeometry and material, the Lorentz factor and the ground state lifetime of the �+��atom. The analysis shows that, to achieve the required accuracy of 10% in the lifetime,the breakup probability, in more or less optimal conditions, should be measured to 4%[1].There are two methods - extrapolation and subtraction ones - which can be usedto measure the breakup probability (or a combination of the breakup probabilities indi�erent targets) [2] Pbr = N brA =NA, de�ned as a ratio of the number of breakup atoms tothe number of the atoms produced in the target. The extrapolation method requires thecalculation of the number of produced �+�� atoms NA based on the theory of the �nalstate interaction (FSI) in discrete and continuous spectrum [8, 9, 10]. This calculation,as well as the determination of N brA , is not required in the subtraction method whichexploits the data taken on at least three di�erent targets made out of the same materialbut consisting of a di�erent number of layers of the same total thickness. However, thismethod needs a factor 7 larger statistics [1] and cannot yield the required precision withinthe approved time{scale of the experiment DIRAC.Regarding the extrapolation method, it is sensitive to the �nite space{time extentof the pion production region entering mainly through the distance r� between the �+and �� production points in their c.m.s.. In Ref. [8], the r�{dependence was treated inan approximate way, dividing the pion sources into short{lived and long{lived ones. Itwas assumed that r� = 0 for pion pairs arising solely from the short{lived sources (SLS)and characterized by the distances r� much smaller than the Bohr radius jaj of the �+��system (a = �387:5 fm), otherwise r� =1.The �nite-size correction to such calculated number of free �+�� pairs in the regionof small relative momenta is determined by the three dimensionless combinations r�=a,f0=r� and f0=a of r�, a and the s{wave �+��-scattering length: f0 = 13(2a00+a20) � 0:2 fm.Typically hr�iSLS � 10 fm so that the correction is dominated by the strong interactione�ect and can amount up to � 10%.Due to a small binding energy �b � (2�a2)�1, the �nite-size correction to the produc-tion probability in discrete spectrum at r� � jaj is nearly the same as that in continuousspectrum at zero energy. Since NA is actually determined by a ratio of the pions producedin discrete and continuous spectrum, this correction, up toO((r�=a)2) and O(f0=a), wouldcancel out in the breakup probability provided we could measure the number of free �+��pairs in the region of very small relative momenta, Q� 1=r� [11, 12].At small values of Q and r�, the relative correction to the number of the free pairsis positive (due to the e�ect of the strong FSI � 2f0=r�) and changes sign at r� � 10fm (due to negative �nite-size e�ect of the Coulomb FSI � 2r�=a). For r� < 20 fm, therelative correction shows a quasi-linear behavior in Q up to � 50 MeV/c, with almost auniversal negative slope. For larger distances r�, the slope becomes positive and has anon-trivial Q{dependence. If the pions were produced at small distances r� of several fm,one could safely neglect the non{universal correction O((r�=a)2) and use the quasi{linearQ-dependence of the number of the free pairs to interpolate to Q = 0. However, there is anon-negligible tail of the distances r� > 10 fm due to particle rescatterings and resonances(particularly, r� � 30 fm in the case when one of the two pions comes from the !-meson2



decay). We show that in DIRAC conditions the �nite{size correction can lead to aboutpercent underestimation of NA and - to a similar overestimation of N brA enhanced (in caseof a homogeneous target) by the ratio of the number of correlated pions to the numberof breakup atoms N corr�+��=N brA � 5. As a result, the �nite-size correction in the extractedlifetime can be on a ten percent level and should be taken into account.We discuss how to diminish the systematic error in the �nite-size correction, usingthe correlation data on identical charged pions (containing the information about thedistances r� between the pion production points in the same experiment) together withthe complete phase{space simulations within transport models. We also show that inthe calculations one can safely neglect non-equal emission times in the pair c.m.s., thespace{time coherence and the residual nucleus charge.The paper is organized now as follows. In sections 2 and 4 we give the basics of thetheory of two-particle correlations due to the e�ects of �nal state interaction and quantumstatistics. Sections 5 and 7 deal with the single- and two-channel wave functions in thecontinuous and discrete spectrum. In section 6 we consider the e�ect of the residualcharge. In sections 3 and 8, we apply the developed formalism to estimate the �nite-sizee�ects on the pionium lifetime measurement in the experiment DIRAC at CERN. Theresults are summarized in section 9. In Appendices A and B we consider the e�ect ofnon-equal times and derive the analytical expression for the normalization e�ect of theshort-range interaction on the wave function of a hadronic atom, modifying the usualn�3=2 dependence of the pure Coulomb wave function on the main quantum number n.The reader interested mainly in practical applications can start reading from sections 3and 8 and eventually consult the rest of the paper to clarify the questions.2 FormalismThe production of two particles at small relative momenta is strongly in
uenced by theirmutual �nal state interaction (FSI) and, for identical particles, also by quantum statistics(QS). One can separate these e�ects from the production amplitude provided a su�cientlylong two-particle interaction time in the �nal state as compared with the characteristictime of the production process. This condition requires the magnitude of the relativethree{momentum q� = p�1 � p�2 � 2k� in the two-particle c.m.s. much smaller thanseveral hundreds MeV/c - the momentum transfer typical for particle production. Fora two-particle bound state the momentum k� in this condition has to be substituted by(2��b)1=2, where �b is the binding energy and � = m1m2=(m1 +m2) is the reduced mass.Consider �rst the di�erential cross section for the production of a pair of non-identicalparticles 1 and 2 with the four-momenta pi = f!i;pig and the Lorentz factors 
i = !i=mi.Generally, it can be expressed through the invariant production amplitudes T (p1; p2;�)in the form: (2�)6
1
2 d6�d3p1d3p2 =X� jT (p1; p2;�)j2; (1)where the sum is done over the total spin S of the pair and its projection M (whichis equivalent to the sum over helicities of the two particles) and the quantum numbersof other produced particles, including integration over their momenta with the energy-momentum conservation taken into account.We are interested in the pairs (1; 2) of the particles produced with a small relative3



velocity in a process with an ordinary phase space density of �nal state particles so thata main contribution to the double inclusive cross section comes from the con�gurations(1; 2; ::; i; ::) with large relative velocities of the particles 1 and 2 with respect to otherproduced particles (i = 3; 4; ::n). Due to a sharp fall of FSI with the increasing relativevelocity, we can then neglect the e�ect of FSI in all pairs (1; i) and (2; i) except (1; 2)and,1 in accordance with the upper diagram in Fig. 1, write the production amplitude asT (p1; p2;�) = T0(p1; p2;�) + �T (p1; p2;�): (2)Here T0(p1; p2;�) is the production amplitude in the case of no FSI, and �T (p1; p2;�)represents the contribution of the FSI between particles 1 and 2, described by the formula�T (p1; p2;�) = ipP 22�3 Z d4� T0(�; P � �;�)fS�(p1; p2;�; P � �)(�2 �m12 � i0)[(P � �)2 �m22 � i0] ; (3)where P � 2p = p1+p2, T0(�; P��;�) is the production amplitude analytically continuedo� mass-shell, fS(p1; p2;�; P � �) is the scattering amplitude of particles 1 and 2 alsoanalytically continued to the unphysical region.2Let us express the amplitude T0 in a form of the Fourier integral:T0(p1; p2;�) = Z d4x1 d4x2e�ip1x1�ip2x2T (x1; x2;�) = Z d4xe�i~qx=2�P (x;�); (4)where the second expression arises after the integration over the pair c.m.s. four{coordinateX = [(p1P )x1 + (p2P )x2]=P 2 (d4x1d4x2 = d4Xd4x) based on the separation of the phasefactors due to the free c.m.s. and relative motions: e�ip1x1�ip2x2 = e�iPXe�i~qx=2. Here therelative four-coordinate x � ft; rg = x1�x2 and the generalized relative four{momentumeq = q � P (qP )=P 2, q = p1 � p2; note that qP = m12 �m22. Apparently, the functionT (x1; x2;�) represents the production amplitude of particles 1 and 2 at the space-timepoints x1 and x2, respectively. It should be stressed that the representation (4) con-cerns virtual particles as well. Inserting now in Eq. (3) the representation (4) with thesubstitutions p1 ! �, p2 ! P � �, we getT (p1; p2;�) = Z d4x1 d4x2	S(�)p1;p2(x1; x2)T (x1; x2;�) = Z d4x S(�)eq (x)�P (x;�); (5)where 	S(�)p1;p2(x1; x2) = [	S(+)p1;p2(x1; x2)]� = [eiPX S(+)eq (x)]� (6)coincides with the Bethe-Salpeter amplitude in continuous spectrum [14]. The secondequality in Eq. (5) merely arises after the integration over the pair c.m.s. coordinateX as a consequence of the factorization of the free c.m.s. motion in the phase factor1Besides the events with a large phase-space density 
uctuations, this assumption may not be justi�edalso in low energy heavy ion reactions when the particles are produced in a strong Coulomb�eld of residualnuclei. To deal with this �eld a quantum adiabatic (factorisation) approach can be used (see Ref. [13]and section 6).2In the case of small k�, we are interested in, the central forces dominate so the scattering amplitudefS is diagonal with respect to the total spin S and doesn't depend on its projections. Further, since mostof the systems of our interest (�+��, K���, ��p, K+K�, K�p, except for �pp) is described by a singlevalue of S, we will often skip it to simplify the notation.4



e�iPX . Thus, on the assumption of the quasi{free propagation of the low{mass two{particle system, the momentum dependence of the two{particle amplitude is determinedby the convolution of the reduced production amplitude�P (x;�) = Z d4Xe�iPXT (x1; x2;�) (7)and the reduced Bethe-Salpeter amplitude  S(�)eq (x), the latter depending only on therelative four-coordinate x and the generalized relative four{momentum eq. Using Eqs. (2)-(5), we can write  S(+)eq (x) = ei~qx=2 +� S(+)eq (x); (8)where the correction to the plane wave is� S(+)eq (x) = pP 22�3i e�iPx(1+Pq=P 2)=2 Z d4� ei�xfS(p1; p2;�; P � �)(�2 �m12 + i0)[(P � �)2 �m22 + i0]: (9)In the two-particle c.m.s., where P = 0, ~q = f0; 2k�g, x = ft�; r�g, the amplitude  S(+)eq (x)at t� � t�1� t�2 = 0 coincides with a stationary solution  S�k�(r�) of the scattering problemhaving at large r� = jr�j the asymptotic form of a superposition of the plane and outgoingspherical waves [15].We see that one and the same production amplitude T (x1; x2;�) or �P (x;�), corre-sponding to the space-time representation, enters into relations (4) and (5). The e�ect ofFSI manifests itself in the fact that the role of the functional basis, which the asymptotictwo-particle state is projected on, is transferred from the plane waves to Bethe-Salpeteramplitudes 	S(�)p1;p2(x1; x2) or  S(�)eq (x).Eq. (5) is valid also for identical particles 1 and 2 provided the substitution of thenon-symmetrized Bethe-Salpeter amplitudes 	S(�)p1;p2(x1; x2) by their properly symmetrizedcombinations satisfying the requirements of quantum statistics:	S(�)p1;p2(x1; x2)! 1p2 [	S(�)p1;p2(x1; x2) + (�1)S	S(�)p2;p1(x1; x2)]: (10)In this case m1 = m2, eq = q and X = (x1 + x2)=2.After substituting the representation (5) into Eq. (1), the double inclusive cross sectiontakes on the form (2�)6
1
2 d6�d3p1d3p2=XS Z d4x1 d4x2 d4x01 d4x02�S(x1; x2;x01; x02)	S(�)p1;p2(x1; x2)	S(�)�p1;p2 (x01; x02)=XS Z d4xd4x0�PS(x;x0) S(�)eq (x) S(�)�eq (x0); (11)where the functions�S(x1; x2;x01; x02) =X�0 T (x1; x2;S; �0)T �(x01; x02;S; �0);�PS(x;x0) =X�0 �P (x;S; �0)� �P (x0;S; �0) � (12)5



Z d4X d4X 0e�iP (X�X 0)�S(X + p2PP 2 x;X � p1PP 2 x;X 0 + p2PP 2 x0;X 0 � p1PP 2 x0)represent elements of the unnormalized two-particle space-time density matrices.3Switching o� the FSI and QS e�ects, for example, by mixing particles from di�erentevents with similar global characteristics, one can de�ne the reference di�erential crosssection(2�)6
1
2 d6�0d3p1d3p2 =XS Z d4x1 d4x2 d4x01 d4x02�S(x1; x2;x01; x02)e�ip1(x1�x01)�ip2(x2�x02)=XS Z d4xd4x0�PS(x;x0)e�ieq(x�x0)=2 (13)and rewrite Eq. (11) asd6�d3p1d3p2 = d6�0d3p1d3p2 XS GS(p1; p2) D	S(�)p1;p2(x1; x2)	S(�)�p1;p2 (x01; x02)E0p1p2S= d6�0d3p1d3p2 XS GS(p1; p2) D S(�)eq (x) S(�)�eq (x0)E0eqPS ; (14)where we have introduced the quasi{averages of the bilinear products of the Bethe{Salpeter amplitudes: D	S(�)p1;p2(x1; x2)	S(�)�p1;p2 (x01; x02)E0p1p2S= R d4x1 d4x2 d4x01 d4x02�S(x1; x2;x01; x02)	S(�)p1;p2(x1; x2)	S(�)�p1;p2 (x01; x02)R d4x1 d4x2 d4x01 d4x02�S(x1; x2;x01; x02)e�ip1(x1�x01)�ip2(x2�x02)= D S(�)eq (x) S(�)�eq (x0)E0eqPS = R d4xd4x0�PS(x;x0) S(�)eq (x) S(�)�eq (x0)R d4xd4x0�PS(x;x0)e�ieq(x�x0)=2 (15)and the statistical factors GS representing the population probabilities of the pair spin-Sstates out of the region of the correlation e�ect:GS(p1; p2) = R d4x1 d4x2 d4x01 d4x02�S(x1; x2;x01; x02)e�ip1(x1�x01)�ip2(x2�x02)PS R d4x1 d4x2 d4x01 d4x02�S(x1; x2;x01; x02)e�ip1(x1�x01)�ip2(x2�x02)= R d4xd4x0�PS(x;x0)e�ieq(x�x0)=2PS R d4xd4x0�PS(x;x0)e�ieq(x�x0)=2 : (16)Note that for unpolarized particles with spins j1 and j2 one has:4GS = (2S + 1)=[(2j1 + 1)(2j2 + 1)]; XS GS = 1: (17)3On the assumption of an instantaneous emission in the two{particle c.m.s. (t�1 = t�2), the secondexpression in Eq. (11) reduces to the ansatz used in Refs. [8, 12].4Generally, the spin factors are sensitive to particle polarization. For example, if two spin-1/2 particlesare independently emitted with the polarizations P1 and P2, then G0 = (1 � P1 � P2)=4 and G1 =(3 + P1 �P2)=4. 6



The same procedure can be also applied to describe the production of weakly boundtwo-particle systems, like deuterons or hadronic atoms (�+�� atoms, in particular). Dueto a low binding energy, as compared with the energy transfers at the initial stage of thecollision, there is practically no direct production of such bound systems. Their dominantproduction mechanism is thus due to the particle interaction in the �nal state. Theinvariant production amplitude Tb(pb;S; �0) of a spin-S bound system b = f1+ 2g is thendescribed by the lower diagram in Fig. 1 corresponding to the second term in the upperdiagram with the free two-particle �nal state substituted by the bound one. Therefore,similar to Eq. (5), this amplitude is related to the Fourier transforms T or �P of theo�-mass-shell two-particle amplitude T0:Tb(pb;S; �0) = Z d4x1 d4x2	S(�)b;pb (x1; x2)T (x1; x2;S; �0) = Z d4x S(�)b (x)�P (x;S; �0) (18)and the corresponding di�erential cross section - to the same two-particle space-timedensity matrices �S or �PS as enter into Eq. (11):(2�)3
bd3�Sbd3pb = Z d4x1 d4x2 d4x01 d4x02�S(x1; x2;x01; x02)	S(�)b;pb (x1; x2)	S(�)�b;pb (x01; x02)= Z d4xd4x0�PS(x;x0) S(�)b (x) S(�)�b (x0): (19)Here 	S(�)b;pb (x1; x2) = [	S(+)b;pb (x1; x2)]� = [eipbX S(+)b (x)]� is the Bethe-Salpeter amplitudefor the bound system. At equal emission times in c.m.s. of the two particles, the ampli-tude  S(+)b (x), describing their relative motion, coincides with the usual non{relativisticwave function in discrete spectrum  Sb (r�). Similar to Eq. (14), one can also rewrite theproduction cross section of the bound system through the reference spectrum in Eq. (13)taken at p1 := p2 := pb=2 and 
1 := 
2 := 
b (i.e. eq := 0):d3�Sbd3pb = (2�)3
b d6�0d3p1d3p2GS(p1; p2) D	S(�)b;pb (x1; x2)	S(�)�b;pb (x01; x02)E0p1p2S= (2�)3
b d6�0d3p1d3p2GS(p1; p2) D S(�)b (x) S(�)�b (x0)E00PS : (20)We see that the production of a weakly bound system f1+2g is closely related with theproduction of particles 1 and 2 in continuous spectrum at small relative energies in theirc.m.s. This relation was �rst formulated [16] in connection with the production of non-relativistic deuterons and then generalized [17] to the relativistic case and the inclusiveproduction. Similar relation was obtained, in the limit of an instantaneous emission froma point-like region, also for the case of the production of pure Coulomb hadronic atoms[8]. A complete treatment of the production of weakly bound systems, accounting for the�nite-size e�ects, can be found in Ref. [9].3 Approximate description of the �+�� productionFollowing Ref. [8], let us �rst neglect the �+�� strong FSI and assume only two types ofpion sources: short{lived sources (e.g., �- or �-resonances) characterized by small sizesor path lengths on a fm level, and long{lived sources (e.g., �, �0, Ks or �) with very7



large or macroscopic path lengths. Since the relative space{time distance between theemission points x enters in the �+�� pure Coulomb amplitudes  (�)coulq (x) and  (�)coulb (x)scaled by the Bohr radius of 387.5 fm, one can put in Eqs. (11) and (19)  (�)q (x) �e�i~qx=2j (�)coulq (0)j = eik�r�j coul�k�(0)j and  (�)b (x) �  (�)coulb (0) =  coulb (0) for the fraction� of the pairs with both pions from short{lived sources, and  (�)coulq (x) � e�i~qx=2 and (�)coulb (x) �  (�)coulb (1) = 0 for the remaining fraction (1 � �). As a result, Eqs. (11)and (19) reduce to: d6�d3p1d3p2 � d6�0d3p1d3p2 [�j coul�k�(0)j2 + (1 � �)]; (21)d3�d3pb � (2�)3
b d3�0d3p1d3p2�j coulb (0)j2; (22)where �0 represents the production cross section of the non{interacting pions and theexpression for the production of bound �+�� system implies p1 := p2 := pb=2 and 
1 :=
2 := 
b. The squares of the non-relativistic Coulomb wave functions at zero separationare well known: j coul�k�(0)j2 � Ac(�) = 2��=[exp(2��)� 1]; � = (k�a)�1; (23)j coulb (0)j2 = �l0(�jaj3n3)�1: (24)Here a = �(�e2)�1 = �387:5 fm is the Bohr radius accounting for the opposite signsof the pion charges. The Coulomb penetration factor Ac(�) (sometimes called Gamowfactor) enhances the production of �+�� pairs at small Q = 2k� as 4�=(jajQ) and at largeQ approaches unity as 1 + 2�=(jajQ). As for the bound �+�� pairs b = fnlg, at zeroseparation they are produced only in the s{wave states fn0g and the fractions with givenmain quantum numbers n are uniquely �xed by the n�3 law in Eq. (24).The numbersNA and N brA of produced and breakup �+�� atoms can then be calculatedin two steps [8]. First, one constructs the uncorrelated two{pion spectrum by mixingpions from di�erent events and determines the overall normalization parameter g and thefraction � or � = �g by �tting the theoretical spectrumd6Nd3p1d3p2 � g d6Nmix0d3p1d3p2 [�Ac(�) + (1 � �)] (25)to the spectrum of the true pion pairs; to get rid of the pairs from the breakup of the�+�� atoms in the target, the �t should be done in the region Q >� 3 MeV/c. In thesecond step, one can use the �tted parameter � = �g to calculate the numbers of theproduced atoms in given states b = fn0g asd3Nd3pb � (2�)3
b d3Nmix0d3p1d3p2�j coulb (0)j2; (26)where p1 := p2 := pb=2. As for the number of breakup atoms, it is simply obtained bysubtracting the �tted spectrum in Eq. (25) from the measured one.Let us now consider the modi�cation of Eqs. (25) and (26) due to the strong FSI and�nite space{time separation of the particle sources. Formally one can writed6Nd3p1d3p2 := g d6Nmix0d3p1d3p2f�[1 + �(k�)]Ac(�) + (1 � �)g; (27)8



d3Nd3pb := (2�)3
b d3Nmix0d3p1d3p2�(1 + �b)j coulb (0)j2; (28)where the correction factors are determined by the averaging of the bilinear products ofthe reduced Bethe{Salpeter amplitudes over the distribution of the relative space{timeseparations of the short{lived sources:51 + �(k�) := D (�)eq (x) (�)�eq (x0)E0SLSeqP =Ac(�); (29)1 + �b := D (�)b (x) (�)�b (x0)E0SLS0P =j coulb (0)j2: (30)The averaging is de�ned in Eq. (15) with the reduced space{time density matrix substi-tuted by its SLS part �SLSP . In fact, it can be argued [11, 12] that�b := �(0) (31)provided the characteristic separation of the pion SLS is much less than the two{pion Bohrradius jaj. This result immediately follows from the well known Migdal's argument [16].Namely, since the particles in continuous spectrum at zero kinetic energy and in discretespectrum at very small binding energy �2=(2�) ! 0 are described by practically the samewave equations, the r�{dependence of the corresponding wave functions at a given orbitalangular momentum should be the same for the distances r� � ��1 (i.e. r� � njaj in thecase of a hadronic atom with the main quantum number n). We show in sections 5.3 and 7that Eq. (31) is subject to a normalization correction O(f0=a) � 0:3%=n and other smallcorrections 4�O(k��(f��0 )2=a) and O(a�2), where k�� = 35:5 MeV/c is the momentumin the channel � = f�0�0g at the threshold transition to the channel � = f�+��g,f��0 = p2(a20 � a00)=3 � �0:2 fm is the transition amplitude. Taking the normalizationcorrection explicitly into account (see Eq. (96)):1 + �n = (1 + �0n)8<:1 + �(n) 2f0njaj �1 +O��k��f��0 �2��� 4�2O0@ f0a !21A9=; ; (32)where �(n) � 3 is de�ned in Eq. (80), one can rewrite the approximate equality in Eq. (31)as �0n = �(0) + 4�O �k��(f��0 )2=a�+O(a�2): (33)In the following, we perform an analytical and numerical study of the corrections �nand �(k�). Here we only mention that the condition r� � njaj can be violated for pionpairs containing pions from the decays of some resonances such as ! and �0 with thepath lengths of about 30 and 900 fm respectively. The corresponding exponential tailsare clearly seen in Fig. 2, where the r�-distribution simulated with the UrQMD transportcode [18] is shown for pion pairs produced in pNi interactions at 24 GeV in the conditionsof the DIRAC experiment at CERN [19].5We put approximate equalities in Eqs. (29) and (30) since they account only for the elastic transition�! � and ignore a small contribution of the inelastic one � ! �, where � = f�+��g, � = f�0�0g; seesection 7 for the complete treatment. 9



4 Space-time coherence, smoothness assumption andequal-time approximation4.1 Non-interacting non-identical particlesTo clarify the meaning of the two-particle space-time density matrix �S(x1; x2;x01; x02), letus �rst neglect the FSI e�ect and substitute the Bethe-Salpeter amplitudes by the planewaves. Changing in Eq. (11) the integration variables: xi; x0i ! �xi = 12(xi+x0i); �i = xi�x0i,we can then rewrite the production cross section of two non-identical particles as(2�)6
1
2 d6�0d3p1d3p2 =XS Z d4�x1 d4�x2GS(�x1; p1; �x2; p2) =XS Z d4�xgPS(�x; eq); (34)where �x = �x1 � �x2 and the real functionsGS(�x1; p1; �x1; p2) = Z d4�1 d4�2e�ip1�1�ip2�2�S(�x1 + �12 ; �x2 + �22 ; �x1 � �12 ; �x2 � �22 );gPS(�x; eq) = Z d4 �XGS( �X+ p2PP 2 �x; p1; �X� p1PP 2 �x; p2) = Z d4�e�ieq�=2�PS(�x+ �2 ; �x� �2): (35)The function GS , usually called emission function, being a partial Fourier transform of thespace-time density matrix, is closely related to the Wigner density, the latter collectingall contributions due to free streaming of the emitted particles to given space-time pointsthrough an integral over the emission function (see Eq. (49) in Ref. [20]).It is clear from Eqs. (34) and (35) that more narrow is the width of the diagonalof the space-time density matrix (the width of the �i-distribution), more wide is thedistribution of particle four-momenta. In particular, the diagonal space-time densitymatrix would yield the uniform four-momentum distribution, in correspondence with thein�nite uncertainty in the four-momenta of the particles localized at certain space-timepoints.Consider as an example the particle emission by independent one-particle sources ofvarious types A according to the one-particle production amplitudes (see also [21])T (1)A (x1;xA) � exp[�(x1� xA)22rA2 � (x01 � x0A)22�A2 ] exp(�xA24r02 � x0A24�02 ): (36)These amplitudes correspond to the sources at rest with a Gaussian distribution of theemission points x1 = ft1; r1g around the source centers xA = ftA; rAg, also distributedaccording to a Gaussian law. Assuming further that the sources are su�ciently heavy,we can describe them classically. The four{coordinates of the source centers xA can thenbe considered as a part of the quantum numbers �0, the sum in Eq. (12) containing theintegration over xA. Performing this integration, we get for the elements of the one-particlespace-time density matrix related to a source A:�(1)A (x1; x01) � exp(� �124rA2 � �0124�A2 ) exp(� �x122r02 + rA2 � �x0122�02 + �A2 ) (37)and for the corresponding emission function:G(1)A (�x1; p) � exp(�rA2p2 � �A2p02) exp(� �x122r02 + rA2 � �x0122�02 + �A2 ): (38)10



We may see that the source space{time dimensions rA and �A determine both the space-time coherence of particle production (the non-diagonality of the space-time density ma-trix) and the distribution of particle four{momenta. In particular case of the sources of avanishing space-time extent: rA = �A = 0 (no coherence) any particle four{momenta areequally probable.Note that for a source moving with a non{relativistic velocity �A and emitting aparticle 1 with the mean three{momentum pA = m1�A, Eqs. (36) and (37) acquirephase factors eipAx1 and eipA�1 respectively and the substitution p ! p � pA has to bedone in Eq. (38). If the pA{distribution decouples from the distribution of other sourcecharacteristics in a Gaussian form of a width �0, we still arrive at Eqs. (37), (38), up toa substitution rA2 ! rA2=[2(rA�0)2 + 1] in the �rst factor, corresponding to a wideningof the momentum distribution due to the dispersion of the source velocities.As for the actual values of the parameters rA and �A, we can estimate them usingthe information about particle transverse momenta which are much less in
uenced by themotion of the sources than the longitudinal ones. Doing this for pions or kaons, we shouldhowever exclude the low{pt region which is dominantly populated by the decays of low-lying resonances. We can also use the p?{distributions of these resonances. In both casesthe pt2{slopes are of �3 (GeV/c)�2 (see, e.g., [22]), yielding on average rA2+�A2 � 0:1 fm2.It is important that the estimated value of rA2+ �A2 appears to be much smaller than thee�ective values of the parameters r02 and �02, measured with the help of the correlations ofidentical particles (so called particle interferometry or correlation femtoscopy; see section4.2 and also the reviews [23]-[28]). The latter being of about 1 fm2 for hadron-hadroninteractions and of several tens fm2 for the collisions involving heavy nuclei.4.2 Non-interacting identical particles4.2.1 Correlation functionConsider the production of non-interacting identical particles. Now we have to substitutethe Bethe-Salpeter amplitude by a properly symmetrized combination of the plane waves(see Eq. (10)). As a result of the interference of these waves, there appears the additionalterm, not present in Eq. (34):(2�)6
1
2 d6�d3p1d3p2 =XS Z d4�x1 d4�x2[GS(�x1; p1; �x2; p2) +GS(�x1; p; �x2; p)(�1)S cos(q�x)]=XS Z d4�x[gPS(�x; q) + gPS(�x; 0)(�1)S cos(q�x)]: (39)Note that the o�-mass-shell four{momentum p = (p1 + p2)=2 enters as an argument ofthe emission function in the interference term.It is convenient to de�ne the correlation function R(p1; p2) as a ratio of the doubleinclusive cross section d6� to the reference one d6�0 which would be observed in the caseof absent e�ects of quantum statistics and FSI:6R(p1; p2) = d6�(p1; p2)d6�0(p1; p2) : (40)6In the high energy collisions involving nuclei, we can neglect the kinematic constraints as well asrather weak dynamical correlations and construct the reference distribution using the particles fromdi�erent events. 11



In case of a negligible FSI, there is no correlation for non-identical particles: R(p1; p2) = 1,while for identical particles the correlation arises due to the interference e�ect:R(p1; p2) = 1+PS R d4�x1 d4�x2GS(�x1; p; �x2; p)(�1)S cos(q�x)PS R d4�x1 d4�x2GS(�x1; p1; �x2); p2 � 1+XS GS(�1)S hcos(q�x)i00p1p2S= 1 + PS R d4�xgPS(�x; 0)(�1)S cos(q�x)PS R d4�xgPS(�x; q) � 1 +XS GS(�1)S hcos(q�x)i00qPS ; (41)where the quasi{averages satisfy the equalitieshcos(q�x)i00p1p2S � <heip1(x1�x02)+ip2(x2�x01)i0p1p2S = hcos(q�x)i00qPS � <heiq(x+x0)=2i0qPS ; (42)the factors GS represent the population probabilities of the pair spin-S states out of theregion of the correlation e�ect. They are de�ned in Eq. (16) and can be expressed throughthe emission functions as:GS(p1; p2) = R d4x1 d4x2GS(x1; p1;x2; p2)PS R d4x1 d4x2GS(x1; p1;x2; p2) = R d4xgPS(x; q)PS R d4xgPS(x; q); XS GS = 1: (43)They can be also considered as the initial (QS switched o�) statistical factors. For initiallyunpolarized spin{j particles: PS GS(�1)S = (�1)2j=(2j + 1).Assuming, for example, that for a (generally momentum dependent) fraction � ofthe pairs the particles are emitted by independent one-particle sources described by theGaussian amplitude (36), while for the remaining fraction (1 � �), related to very long{lived sources (�, �0, K0s , �, . . . ), the relative distances r� between the emission points inthe pair c.m.s. are extremely large, the correlation functionR(p1; p2) = 1 + �XS GS(�1)S exp(�r02q2 � �02q20): (44)We see that a characteristic feature of the correlation function of identical particles is thepresence of an interference maximum or minimum at small jqj, changing to a horizontalplateau at su�ciently large jqj, large compared with the inverse characteristic space-timedistance between the particle emission points.4.2.2 Directional and velocity dependenceOne can see from Eq. (44) that, due to the relation q0 = vq � vqL, the correlation functionat v�0 > r0 substantially depends on the direction of the vector q even in the consideredcase of spherically symmetric spatial form of the production region. Thus the transverse(q ? v) and longitudinal (q k v) interferometry radii are rT = r0 and rL = (r20 + v2� 20 )1=2respectively.In principle, the directional and velocity dependence of the correlation function allowsto determine the characteristic emission time and the form of the production region [23]and reveal the details of the production dynamics (such as collective 
ows; see, e.g.[29, 30]). For this, the correlation function is often analyzed in terms of the out (x), side(y) and longitudinal (z) components of the relative momentum vector q = fqx; qy; qzg.12



Here the out and side denote the transverse, with respect to the reaction (event) axis,components of the vector q, the out direction is parallel to the transverse component ofthe pair velocity vector.It should be noted that particle correlations at high energies usually measure only asmall part of the space-time emission volume, being only slightly sensitive to its increaserelated to the fast longitudinal motion of the particle sources. In fact, due to limitedsource decay momenta p(s) of a few hundred MeV/c, the correlated particles with nearbyvelocities are emitted by almost comoving sources and so - at nearby space{time points.In other words, the maximal contribution of the relative motion to the interferometryradii in the two{particle c.m.s. is limited by the moderate source decay length �p(s)=m.The dynamical examples are sources-resonances, color strings or hydrodynamic expansion.To substantially eliminate the e�ect of the longitudinal motion, the correlations can beanalyzed in terms of the invariant variable Q = 2k� � (�eq2)1=2 and the components ofthe three{momentum di�erence in pair c.m.s. (q� � Q = 2k�) or in the longitudinallycomoving system (LCMS). In LCMS, each pair is emitted transverse to the reaction axisso that the generalized relative four{momentum eq coincides with q� except for the out{component eqx = 
tq�x, where 
t is the LCMS Lorentz factor of the pair. For example,in the case of one{dimensional boost invariant expansion, the longitudinal interferometryradius in the longitudinally comoving system reads [30] rz = (T=mt)1=2� , where T is thefreezeout temperature, � is the proper freezeout time and mt is the transverse particlemass.Clearly, the complicated dynamics of particle production requires a detailed study ofthe directional and momentum dependence of the correlation functions. Moreover, theusual Gaussian parametrization of the relative distances between the emission points mayhappen to be insu�cient. Particularly, it can lead to inconsistencies in the treatment ofQS and FSI e�ects, the latter being more sensitive to the tail of the distribution of therelative distances. These problems can be at least partially overcome with the help oftransport code simulations accounting for the dynamical evolution of the emission processand providing the phase space information required to calculate the QS and FSI e�ectson the correlation function.4.2.3 Smoothness assumptionIn the simple model of only one type of the sources contributing to the observable inter-ference e�ect and in the absence of the relative source motion, the width of the low{jqjstructure is solely determined by the characteristic space{time distance between the one{particle sources and does not depend on the parameters rA and �A, characterizing thespace-time extent of the sources themselves - see Eq. (44). It means that the enlargementof the production region related to the latter (r02 ! r02 + 12rA2, �02 ! �02 + 12�A2) iscompensated in the correlation function due to the di�erent momentum arguments of theemission functions in the numerator and denominator of Eq. (41).7Generally, the particles are emitted by moving sources of di�erent types and the cor-relation function depends also on their space{time extent. Particularly, for a Gaussian7This is clearly seen when calculating the correlation function directly from Eq. (1), substitutingthe production amplitude T (p1; p2;�) by the symmetrized product of the Kopylov{Podgoretsky one-particle amplitudes in momentum representation (given by the inverse Fourier transform of Eq. (36)):T (1)A (p; xA) = u(p; xA)eipxA , where u(p; xA) is a universal one{particle amplitude.13



distribution of the mean emission three{momentum pA of a width �0, Eq. (44) is modi-�ed by the substitution [21] r02 ! r02+ rA2=[2 + (rA�0)�2]. Usually, the e�ect of a �nitespace{time extent of the one{particle sources is negligible:rA2=2 � r02; �A2=2 � �02: (45)Note that these conditions guarantee su�ciently smooth four{momentum dependence ofthe emission function GS(�x1; p1; �x2; p2), such that we can neglect its dependence on thefour{momentum di�erence q in the region of the interference e�ect characterized by theinverse space-time distance between the particle production points. On this, so calledsmoothness assumption, Eq. (41) reduces to:R(p1; p2) := 1 +XS (�1)SGShcos(qx)iqPS; (46)wherehcos(qx)iqPS = R d4x1 d4x2GS(x1; p1;x2; p2) cos(qx)R d4x1 d4x2GS(x1; p1;x2; p2) = R d4xgPS(x; q) cos(qx)R d4xgPS(x; q) (47)and the spin factors GS are de�ned in Eqs. (16) and (43).Eq. (46) is valid up to a correction representing a fraction of (rA2+v2�A2)=(r02+v2�02).This correction is less than a few percent for high energy hadron{hadron collisions andless than a few per mil for those involving heavy nuclei. Note that Eq. (47) is often usedto calculate the correlation functions of non-interacting identical particles with the helpof various classical transport codes (like RQMD, VENUS or UrQMD) [18] - the emissionpoints are identi�ed with the points of the last collisions or the resonance decays.4.3 Interacting particlesIt is clear that the smoothness condition allows one to express the production cross sectionthrough the emission function GS(x1; p1;x2; p2) also in the case of interacting particles.Thus, separating the two-particle c.m.s. motion in the phase factor exp[iP (X �X 0)] �exp[i(p1 � eq=2)�1 + i(p2 + eq=2)�2] and using the smoothness condition to neglect here eqcompared with p1;2 8 and substitute, in the amplitudes  S(+)eq (x), the relative coordinatesx = �x+(�1� �2)=2 and x0 = �x� (�1��2)=2 by their mean value �x, we can rewrite Eq. (11)in a simple approximate form:(2�)6
1
2 d6�d3p1d3p2 := XS Z d4x1 d4x2GS(x1; p1;x2; p2)j S(+)eq (x)j2= XS Z d4xgPS(x; eq)j S(+)eq (x)j2� (2�)6
1
2 d6�0d3p1d3p2 XS GShj S(+)eq (x)j2ieqPS ; (48)where d6�0 is the production cross section of the non-interacting particles introduced inEq. (34). The averaging h: : :ieqPS and the initial spin factors GS are de�ned in Eqs. (47)8The account of eq in the phase factor would lead to the substitution of the particle four{momenta inthe emission function by their mean (o�-mass-shell) values: pi ! Pmi=(m1 +m2).14



and (43). The correlation function de�ned as a ratio d6�=d6�0 then takes on the form:R(p1; p2) :=XS GShj S(+)eq (x)j2ieqPS: (49)Recall that for identical particles the Bethe-Salpeter amplitudes  S(+)eq (x) should be sym-metrized according to Eq. (10).Note that for non-identical particles, one also arrives at Eqs. (48) and (49) usingthe approximate ansatz 	S(+)p1;p2(x1; x2) := ei(p1�1+p2�2)	S(+)p1;p2(�x1; �x2) which becomes exact inthe absence of FSI. For identical particles, this ansatz, applied to the non-symmetrizedamplitudes e	S(+), leads to the correlation function (see also Eqs. (58) and (60) in Ref. [20])R(p1; p2) :=XS GS hhj e S(+)q (x)j2iqPS + (�1)S<h e S(+)q (x) e S(+)��q (x)i00qPSi ; (50)where e is the reduced non-symmetrized Bethe-Salpeter amplitude ( e S(+)q (x) = eiqx=2 fornon-interacting particles). Clearly, the smoothness condition allows one to put h: : :i00qPS :=h: : :iqPS and thus recover Eq. (49).Similar to the case of non-interacting particles, the relative correction to the approx-imations in Eqs. (48)-(50) is determined by the ratio (rA2 + v2�A2)=(r02 + v2�02) - ameasure of the non-diagonality of the space-time density matrix. For identical particles,the correction arises mainly from the symmetrization e�ect and, according to previoussubsection, it is expected less than a few per mil for the processes involving heavy nuclei.For non{identical particles, the correction is usually substantially smaller, being scaledby the relative �nite{size contribution of the strong and Coulomb FSI.9Proceeding in a similar way with the production cross section of a bound two-particlesystem, we arrive, on the same conditions as in the case of continuous spectrum, at theapproximate form:(2�)3
bd3�Sbd3pb := Z d4x1 d4x2GS(x1; p1;x2; p2)j S(+)b (x)j2= Z d4xgPS(x; 0)j S(+)b (x)j2� (2�)6
1
2 d6�0d3p1d3p2GShj S(+)b (x)j2i0PS; (51)where pi = pbmi=(m1 +m2).We will show that for two oppositely charged particles, the x{dependence of the Bethe-Salpeter amplitudes in continuous and discrete spectrum is practically the same at c.m.s.separations r� much smaller than the Bohr radius jaj. Therefore, the corrections toEqs. (48) and (51) (arising due to the use of the smoothness assumption in their derivationfrom Eqs. (11) and (19) respectively) practically cancel out in the ratio of the numbersof pairs produced in continuous and discrete spectrum provided hr�iSLS � jaj.4.4 Equal-time approximationFor non-interacting particles, the non-symmetrized Bethe-Salpeter amplitude  (+)eq (x) =e�ik�r� is independent of the relative emission time t� in c.m.s. of the pair. On the9In case of jfS j � r� � jaj, we are interested in, the corresponding strong and Coulomb FSI contri-butions are of 2fS=r� and 2r�=a respectively (see next section).15



contrary, the amplitude of two interacting particles contains an explicit dependence on t�- the interaction e�ect vanishes at jt�j ! 1. However, it can be shown [10] (see AppendixA) that the e�ect of non-equal times can be neglected on conditionjt�j � m(t�)r�2; (52)where m(t� > 0) = m2 and m(t� < 0) = m1. On this condition we can use the approxima-tion of equal emission times of the two particles in their c.m.s (t� = 0) and substitute theBethe-Salpeter amplitude by the usual non-relativistic two-particle wave function. Theapplicability condition (52) of the equal-time approximation is usually satis�ed for heavyparticles like kaons or nucleons. But even for pions this approximation merely leads to aslight overestimation (typically less than a few percent) of the strong FSI contribution tothe production cross section [10]. To demonstrate this, we use the simple static Gaussianmodel of independent one-particle sources described by the amplitude (36). Recall, how-ever, that in high energy collisions, such a model is relevant for a limited rapidity regiononly. It means that the pair velocity v in the rest frame of the sources is related to themeasured velocity rather indirectly.10 In this model, the applicability condition (52) ofthe equal-time approximation can be roughly written in the form [10]:�0 � �
r0(r02 + v2�02)1=2: (53)For �0 <� r0 this condition requires su�ciently small Compton wave lengths of theparticles in the source rest frame: 1=!i � r0, while for large characteristic emission times,�0 � r0=v, it requires small de Broglie wave lengths: 1=pi � r0. Clearly, this condition isnot satis�ed for very slow particles emitted by the sources of a long lifetime. The increasingimportance of the non-equal time e�ect with the decreasing pair velocity and increasinglifetime of the sources is demonstrated in Figs. 3 and 4 for the FSI contribution in the�0�0 correlation function. For su�ciently large velocities v > 0:5 and radii r0 > 1 fm, weare interested in, the e�ect is rather small, not exceeding 5% of the FSI contribution inthe low-k� region, corresponding to the e�ect of a few per mil in the correlation function.As for the e�ect of non-equal times on the Coulomb FSI it doesn't in
uence theleading zero{distance (r� = 0) part and, the e�ect of the subleading part (expected on asimilar percent level as in the case of the strong FSI) can be neglected when scaled byits contribution � r�=a. It concerns also the case of hadronic atoms since the subleadingpart is the same as in the continuous spectrum at k� = 0.Adopting the equal-time approximation (with the accuracy of a few per mil), wecan rewrite Eqs. (48) and (51) for the production cross sections of particles 1 and 2 incontinuous and discrete spectrum at low relative or binding energies as follows:
1
2 d6�d3p1d3p2 := 
1
2 d6�0d3p1d3p2 XS GShj S�k�(r�)j2ieqPS; (54)
bd3�Sbd3pb := (2�)3
1
2 d6�0d3p1d3p2GShj Sb (r�)j2i0PS ; (55)where b = fn0g and pi = pbmi=(m1+m2) in Eq. (55); for equal-mass particles p1 = p2 =pb=2 and 
1 = 
2 = 
b.10We can roughly estimate hvi from the distribution of particle transverse momenta. Taking for pionsthe p2?-slope of � 6 (GeV/c)�2 (now we have to account for lower p?-values due to indirect pions) andusing hv2i � h3p2?=(3p2? +m122)i, we get hvi � 0:8.16



Particularly, for �+�� production, one can rewrite the correction factors in Eqs. (29)and (30) as 1 + �(k�) := Dj �k�(r�)j2ESLSeqP =Ac(�); (56)1 + �n := Dj n0(r�)j2ESLS0P =j coulb (0)j2: (57)5 Wave functions5.1 Continuous spectrum5.1.1 Short{range FSILet us start with the case when at least one of the two particles is neutral and their FSIis due to the short{range forces only. In the considered region of small k� the short{rangeparticle interaction is dominated by s-waves. Since the radius of the s-wave interaction isusually small compared with the distance r� between the production points of particles 1and 2 in their c.m.s., the FSI e�ect is mainly determined by the asymptotic behavior ofthe scattered wave outside the region of the strong interaction r� > d:� �k�(r�) = f(k�)eik�r�=r�: (58)The s-wave amplitude f depends on the magnitude of the vector k� only. Assuming theabsence of inelastic transitions, it satis�es the one{channel s{wave unitarity condition=f = k�jf j2 or, equivalently =f�1 = �k�, and so can be represented asf = [exp(2i�0)� 1]=(2ik�) = (K�1 � ik�)�1; (59)where �0 is the s{wave phase shift and K�1 = k� cot �0 is a real function of k�. Usually(for potentials vanishing with the distance exponentially or faster), this function is realalso for negative kinetic energies k�2=(2�), so that its expansion can contain only evenpowers of k� [15]. Retaining near threshold only the �rst two terms in the expansion, onecan express the function K�1 or K through the corresponding two parameters: scatteringlength f0 and e�ective range d0 or curvature b0:K�1 := 1=f0 + 12d0k�2; K := f0 + b0k�2; b0 := �d0f02=2: (60)The expansion ofK�1 is superior for two{nucleon systems (due to large scattering lengths,amounting to about 20 fm in the singlet case) while for other systems, the K{expansionis often preferred. To extend the latter to a wider energy range, it is usually written in arelativistic form and additional parameters are added. For example [6]:K = 2ps sth � s0s� s0 3Xj=0Ajx2j; x = 2k�=psth; (61)where s = (p1 + p2)2 = (!�1 + !�2)2, !�1;2 = (m21;2 + k�2)1=2 and sth = (m1 + m2)2. Theparameter s0 takes into account the eventual resonance, specifying the value of the two{particle c.m.s. energy squared where the phase �0(k�) passes through 90o.1111The actual k�-dependence of the K-function is however not important since we are interested in thenear-threshold region and, have already neglected the p-wave correction O(k�2a1=r�) in Eq. (58); here a117



Table 1: The pair Bohr radius including the sign of the interaction, a = (�z1z2e2)�1,and the characteristic width of the Coulomb correlation e�ect, Qc � 2k�c = 4�=jaj, corre-sponding to j�j�1 = 2� (see Eq. (23) and the �rst panel in Fig. 5).Pair �+�� �+K� ��p K+K� K�p pp�a; fm �387:5 �248:6 �222:5 �109:6 �83:6 �57:6Qc; MeV/c 6.4 10.0 11.1 22.6 29.7 43.0Note that the extension of the asymptotic wave function in the inner region leads toa relative shift in the production cross section of the order jf j2 ddk�2Re(1=f)=hr�i3 [10, 31].The leading part of this shift can be, in principle, corrected for (see section 7.3). However,being quadratic in the amplitude f , it is rather small for ��-, �K- or �p{systems - usuallynot exceeding several percent of the short{range FSI contribution.5.1.2 Account of the Coulomb FSISimilar to the case of neutral particles, we will approximate (with the same accuracy) thewave function of two charged particles near threshold by the asymptotic solution outsidethe region of the strong interaction r� > d. It is well known that the long{range Coulombinteraction modi�es both the plane and spherical waves [15]: �k�(r�) = ei�cqAc(�) "e�ik�r�F (�i�; 1; i�) + fc(k�) eG(�; �)r� # ; (62)where � = k�r� + k�r� � �(1 + cos ��), � = k�r�, � = (k�a)�1, a = (�z1z2e2)�1 is thetwo-particle Bohr radius including the sign of the interaction, �c = arg�(1 + i�) is theCoulomb s-wave phase shift, Ac(�) is the Coulomb penetration factor de�ned in Eq. (23),F (�; 1; z) = 1 + �z=1!2 + �(� + 1)z2=2!2 + � � � (63)is the con
uent hypergeometric function and eG = pAc(G0 + iF0) is a combination of theregular (F0) and singular (G0) s{wave Coulomb functions (see, e.g., [32]):eG(�; �) = P (�; �) + 2�� [ln j2��j+ 2C � 1 + �(�)]B(�; �): (64)Here C := 0:5772 is the Euler constant, the functionsB(�; �) = 1Xs=0Bs; B0 = 1; B1 = ��; B2 = (��)2=3� �2=6; : : : ;P (�; �) = 1Xs=0Ps; P0 = 1; P1 = 0; P2 = �3(��)2 � �2=2; : : : (65)is a p-wave scattering length. For �+�� system, a1 � 0:1 fm3, f0 � 0:2 fm, d0 � �10 fm and the relativep-wave contribution to the k�2 term due to the short-range FSI composes in the production cross section� a1=(a1�d0f02=2�f03=3) � 30%; the relative contribution of the k�2 term� (a1�d0f02=2�f03=3)k�2=f0being less than 1% of the total short-range FSI contribution for Q = 2k� < 30 MeV/c.18



are given by the following recurrence relations:12(n+ 1)(n+ 2)Bn+1 = 2��Bn � �2Bn�1;n(n+ 1)Pn+1 = 2��Pn � �2Pn�1 � (2n + 1)2��Bn (66)and the function �(�) = h(�) + iAc(�)=(2�); (67)where the function h(�) is expressed through the digamma function  (z) = �0(z)=�(z):13h(�) = [ (i�) +  (�i�)� ln(�2)]=2: (68)The amplitude fc(k�) = f(k�)=Ac(�), where f(k�) is the amplitude of the low-energys-wave elastic scattering due to the short{range interaction renormalized by the long{range Coulomb forces. Assuming again the absence of inelastic transitions, the amplitudef(k�) = (e2i�0�1)=(2ik�) and satis�es the one{channel s{wave unitarity condition. Similarto the case of neutral particles, one then has [15]:fc(k�) =  K�1 � 2�(�)a !�1 ; (69)where the function K is real for real kinetic energies, including negative ones (providedthe short{range potential vanishes with the distance exponentially or faster), and can beparametrized according to Eqs. (60) or (61).Note that �c ! 0, Ac ! 1 for � ! 0 (k� � jaj�1) and eG ! ei�, F ! 1 for�� � r�=a ! 0. So, the two{particle wave function in the absence of the long{rangeCoulomb forces is recovered provided r�, f0 and 1=k� are much smaller than the Bohrradius jaj.In Fig. 5, we plot Ac(�) and �(�) as functions of the variable j�j�1 = jak�j. Forthe system of two charged pions, this variable approximately corresponds to Q = 2k� inMeV/c. One may see that, at k� ! 0, the Coulomb penetration factor Ac(�) respectivelytends to 0 and 1 for like and unlike particle charges. With the increasing k�, this factorslowly approaches unity: Ac(�) � 1 � �� for k� > 2�=jaj. Note that the quadraticbehavior of <�(�) � h(�) � ��2=12 at j�j�1 < 1 is changed by a steep quasi{linear risein the interval 1 < j�j�1 < 5; the corresponding slope being about 0.26. As for =�(�) �Ac(�)=(2�), at k� = 0 it equals to 0 and �� for like and unlike charges respectively, and,for k� > 2�=jaj, it approaches the linear k�{dependence: =�(�) � (��1 � �)=2.5.1.3 The small- and large-r� limitsSince we are interested in the region of small relative distances r� compared with theBohr radius jaj and small relative momenta Q = 2k� compared with 1=r�, it is useful towrite the �rst terms in the expansion of the hypergeometric functions F and eG in r�=aand � � k�r�. We have (x = cos ��):F (�i�; 1; i�) = 1 + r�a (1 + x) "1 + i�4 (1 + x)� �218(1 + x)2 +O(�3)#+O �(r�a )2� ;eG(�; �) = 1 � �22 + 2r�a �ln j2r�a j+ 2C � 1 + �(�)� 1� �26 !+O(�4) +O�(r�a )2� : (70)12Note that B(�; �) � F0=(�pAc)! sin(�)=� and P (�; �)! cos(�) in the limit �� � r�=a! 0.13For j�j < 0:3 the function h(�) := 1:2�2� ln j�j�C, while at large j�j this function can be representedby a truncated series in inverse powers of �2: h(�) = ��2=12 + ��4=120 + � � �.19



Since for the systems of interest (��, �K, �p), jf0j2 < jf0d0j <� m��2 � r�2, onecan neglect the Q{dependence of the scattering amplitude and, after the averaging overthe uniform x{distribution,14 write the correlation function at a �xed separation r�R(k�; r�) = hj �k�(r�)j2i asR(k�; r�) = Ac(�)*jF j2 + 2< eik�r�F � eGf0r�!+O  (f0r� )2!+= Ac(�)(1 + 2r�a + 2f0r� + 2f0a �1 + 2�ln j2r�a j+ 2C � 1 + h(�)��� �2  29 r�a + 43 f0r�!+O (f0r� )2!+O�(r�a )2�+O(�4)) : (71)In Figs. 6, 7 and 8, we show theQ{dependence of the functions B(�; �), P (�; �), eG(�; �)and the reduced correlation functionR=Ac as well as the corresponding main contributionsdue to the interference term and the modulus squared of the hypergeometric function forthe �+�� system at r� = 5, 15, 50 fm. One may see that the almost universal quasilineardecrease of R=Ac for r� <� 20 fm is due to the interference term, and that it is changed,for higher r�{values, by a steep rise due to the jF j2{term. From the results of table 2 onecan conclude that the linear �ts of R=Ac recover the intercept better than to 2 per milfor r� <� 20 fm and - better than to 2 percent even for r� = 50 fm.To clarify the origin of the quasilinear behavior of the reduced correlation functionR=Ac, one can use Eq. (71) to estimate the slope at small Q:(RAc )0 � ddQ �RAc� := �2f0 dhdj�j�1 �  �19 r�jaj + 23 f0r�! r�2Q; (72)where the sign + (�) corresponds to the Coulomb repulsion (attraction). Using the factthat dh=dj�j�1 � 0:26 for 1 < j�j�1 < 5, one has (R=Ac)0 � �(0:61 + bQ) (GeV/c)�1 forthe �+��{system at 1 < Q < 5 MeV/c, where b = 0.019, 0.035 and -0.72 (MeV/c)�1 atr� = 5, 15 and 50 fm respectively. For Q > 5 MeV/c, the absolute value of the slope dueto the h{function decreases as � 2:35j�j. It appears, that for r� <� 20 fm, this decreaseis approximately compensated by the Q{dependence of the functions B, P and F , so that(R=Ac)0 � �0:5 (GeV/c)�1 up to Q = 50 MeV/c.Note that, at � � 1 + �2,qAc(�)F (�i�; 1; i�)!  1 � i�2� ! ei(��c+� ln �) + �� ei(�c+��� ln �) (73)and, at �� 1 + �2, eG(�; �)! qAc(�)ei(�c+��� ln 2�); (74)so that both the e�ects of the Coulomb and strong FSI vanish in the cross section as r��2.In fact, the asymptotic expression for the F -function in Eq. (73) is not valid in the caseof nearly opposite directions of the vectors k� and r� (cos �� � �1) when the variable� = �(1 + cos ��) is suppressed even at large � = k�r�. This leads, after averaging overthe angles, to a slower vanishing of the Coulomb e�ect, as r��1, in agreement with theclassical Jacobian factor [1� 2=(ar�k�2)]1=2 � 1 � (ar�k�2)�1.14In case of an anisotropic r�{distribution, this implies the integration over the direction of the vectork� = Q=2, distributed isotropically for uncorrelated particles at Q! 0.20



Table 2: Results of the linear �ts of the reduced �+�� correlation function: R=Ac =c0 + c1Q in di�erent intervals 0 < Q < Qmax. The function R=Ac is calculated at r� = 5,15 and 50 fm in the approximation of a constant scattering amplitude fc(k�) = f0 = 0:232fm and, assuming the uniform distribution of the cosine of the angle between the vectorsr� and k� = Q=2. Also shown are the corresponding values of R=Ac at Q = 0 (theintercepts).r�, fm Intercept Qmax, MeV/c 10 20 30 40 505 1.077 c0 1.077 1.077 1.077 1.077 1.078c1, (GeV/c)�1 -0.55 -0.47 -0.48 -0.52 -0.5715 0.961 c0 0.961 0.961 0.961 0.960 0.959c1, (GeV/c)�1 -0.59 -0.56 -0.55 -0.51 -0.4250 0.783 c0 0.778 0.768 0.766 0.773 0.783c1, (GeV/c)�1 2.55 4.61 4.99 4.38 3.695.2 Discrete spectrumSince the Schr�odinger equation at a small negative energy ��b = ��2=(2�) practicallycoincides with that in continuous spectrum at zero energy, the r�-dependence of thecorresponding wave functions at given orbital angular momentum l and r� � ��1 isthe same.15 In fact, both solutions (at positive and negative energies) can be written inthe same form for any r�, up to an energy dependent normalization factor N . Outsidethe region of the short{range interaction, r� > d, we can write the s-wave solution as acombination of the regular and singular Coulomb functions: l=0(r�) = N (�)24 F0(�; �)�qAc(�) + fc(k�) eG(�; �))r� 35 : (75)At d < r� � jaj and j�j � 1 it takes on the form: l=0(r�) = N �(1 + r�a ) +O �(r�a )2�+O(�2) ++fc 1r� �1 + 2r�a �ln j2r�a j+ 2C � 1 + �� (1 + r�a ) +O�(r�a )2�+O(�2)�� : (76)For positive energies, N = ei�cqAc(�) and, at k� ! 0, fc = f0=[1 � 2f0�(�1)=a],�(+1) = 0 (a > 0) or �(�1) = �i� (a < 0). In the case of opposite charges (a < 0),Eq. (76) yields: k�;l=0 = ei�cqAc ( 1 � r�jaj!"1 � 2 f0jaj �ln ����2r�a ����+ 2C � 1�#+ f0r�++ 1 + f0r�! "2i� f0jaj +O�(r�a )2�+O ��2�#) : (77)15This important conclusion was �rst stated by Migdal for the pn-system [16].21



For the discrete levels at negative energies, the substitution k� ! i�n has to be done,particularly yielding [15, 31]:�(�n) = �2 cot( ��njaj) + 12 "2 ln(�njaj) +  ( 1�njaj) +  (� 1�njaj)# ; (78)where �n = (i�na)�1. Later on, we will use a more compact form of Eq. (78) followingfrom the relation  (�x) =  (x) + � cot(�x) + x�1:�(�n) = � cot(�xn)� (2xn)�1[�(xn)� 3]; xn = (�njaj)�1; (79)�(x) = 2 + 2x[lnx�  (x)]: (80)For a pure Coulombic atom (a < 0, f0 = 0), only the solution F0=�, regular at r� ! 0,contributes and the requirement of its exponential damping at large distances �xes theenergy levels. The corresponding �-values at a given principle quantum number n areequal to �cn = (njaj)�1. The wave functions  coulnl (r�) can then be expressed in terms ofthe Laguerre polynomials L2l+1n+l�1(z). For l = 0, couln0 (r�) =  couln0 (0) exp � r�njaj!L1n�1  2r�njaj! =(n � n!): (81)The square of the wave function  couln0 (0) at zero separation is given in Eq. (24) and theLaguerre polynomials are de�ned by the following recurrence relations:L1n�1(z) = (n � n!) n�1Xs=0 lsn�1(z); l0n�1(z) = 1; lsn�1(z) = �z(n� s)s(s+ 1) ls�1n�1(z): (82)At r� � njaj,  couln0 (r�) =  couln0 (0) "1 � r�jaj +O�( r�na)2�# : (83)The strong interaction slightly shifts the Coulombic energy levels thus making theregular part of the general solution (75) divergent at large distances. Therefore, theamplitude fc has to have a pole at k� = i�n, and so, according to Eq. (69),�(�n) = � jaj2K(i�n) = � jaj2f0 "1 +O f0d0(na)2!# : (84)Using Eqs. (79) and (84), one can �x the energy levels En = ��n2=(2�) in discretespectrum with the relative error of O (a�3):16�n = �cn (1 + 2f0�cn "1 + f0�cn[�(n)� 1]� 4�23 O  f02a2 !+O f0d0n2a2!#) ; �cn = (njaj)�1;(85)16To show this, one can put �n = �cn(1+ �), xn = j�naj�1 = n=(1+ �) and use the equality tan(�xn) =� tan(�xn�) = �(�xn�)[1+(�2n2=3)O(�2)] and the inequality j�(xn)��(n)j < O(�), the latter followingfrom the fact that �0(n) vanishes faster than n�1. Note that Eq. (85) is in agreement with the result of Ref.[33] for the relative energy shift �(n; 0) � (2 + �)� := �0(n; 0)[1 + �0(n; 0)p1(n; 0)], where �0(n; 0) = 4f0�cnand p1(n; 0) = �(n)=4. 22



where the function �(n) is de�ned in Eq. (80) and the digamma function for the integervalues of the argument is given by the recurrence relation: (n+ 1) =  (n) + 1=n;  (1) = �C := �0:5772: (86)Note that �(n) � 3 is nearly constant: �(1) = 2 + 2C := 3:15443, �(2) := 3:08145,�(3) := 3:05497, : : :, �(1) = 3.Since N(�n) = 0 (to compensate for the pole of the amplitude fc at k� = i�n), thes{wave solutions in discrete spectrum are now given (for r� > d) by the second term inEq. (75), exponentially vanishing at large distances: n0(r�) = N 0(n)K(i�n) eG(�n; �n)r� = N 0(n)f0 eG(�n; �n)r� "1 +O f0d0n2a2!# : (87)The arguments �n and �n are taken at k� = i�n and the normalization factorN 0(n) = N (�n)fc(i�n)=K(i�n) (88)is set by the requirement Z j n0(r�)j2d3r� = 1: (89)Note that the extension in the integral (89) of the asymptotic wave function (87) into theinner region r� < d leads to negligible relative errors O(f0d2=(na)3), O(f20d=(na)3) in thenormalization factor N 0. Comparing the expansion of the wave function  n0(r�) for thedistances d < r� � jaj:17 n0(r�) = N 0(n)( 1� r�jaj! "1� 2 f0jaj �ln ����2r�a ����+ 2C � 1�# + f0r�+O f0d0n2a2!+O  f0r�a2 !) (90)with the low{r� expansion (83) of the pure Coulombic wave function and, also takinginto account the exponential damping at large distances, one can approximate the wavefunction (87) at r� � ja2=f0j by the expression: appn0 (r�) = N 0(n) couln0 (0) couln0 (r�) "1 � 2 f0jaj �ln ����2r�a ����+ 2C � 32�+ f0r� # : (91)From the results of calculations for the s{wave �+�� atoms, presented in upper panel ofFig. 9, one can see that the squares of the approximate and exact expressions (91) and(87) practically coincide for the distances up to several tens fm and that the agreementis better than percent even at r� � jaj.It follows from Eq. (91) that the relative di�erence of the normalization factors N 0(n)and  couln0 (0) scales as O(f0=a). In fact, this di�erence can be �xed when extending thetheory to a multichannel case and requiring the equality of the total width �n = �2=Enand the sum of the partial widths (see Eqs. (B.1) and (B.5) or, Eqs. (B.7) and (B.4)).As a result: jN 0(n)= couln0 (0)j2 � 1 := �(n) 2f0njaj: (92)We have checked Eq. (92), calculating N 0 from the integral (89) for various values of thescattering length f0, Bohr radius jaj and the principle quantum number n.17See the expansion of the eG-function in the square brackets in Eq. (76) and use Eq. (84) for �(�n).23



5.3 UniversalityComparing Eqs. (77) and (90), valid for the distances d < r� � jaj, one con�rms theimportant conclusion, already stated at the beginning of the previous subsection, aboutthe universality of the r�{behavior of the moduli squared of the s-wave solutions in con-tinuous (k� ! 0) and discrete spectrum, up to corrections vanishing as inverse squares ofthe Bohr radius jaj. Assuming f0 <� d, one has:�k�n0(r�) � ����� k�0(r�)= coulk�0 (0) n0(r�)=N 0(n) �����2� 1 = 4�2O  f02a2 !+O f0d0n2a2!+O r�2a2 !+O(�2): (93)The universality holds with the same accuracy also if the s{wave solution in continu-ous spectrum were substituted by the complete wave function (recall that  coul�k�(0) = coulk�0 (0) � A1=2c ), provided the averaging over the angle between the the vectors r� andk�:�k�n (r�) � *����� �k�(r�)= coul�k�(0) n0(r�)=N 0(n) �����2+� 1 = 4�2O f02a2 !+O  f0d0n2a2!+O r�2a2 !+O(�2):(94)This result follows from the fact that, at k� ! 0 and typical distances r� � jaj, thetotal wave function in continuous spectrum almost coincides with the s-wave amplitude k�0(r�) (see the lower panel in Fig. 8): �k�(r�) =  k�0(r�) + ei�cqAck�r�k�a +O r�2a2 !+O(�2) (95)and, that the relatively signi�cant correction term O(r�=a) vanishes after the averagingover the directions of the relative three{momentumQ = 2k�.18 From the lower panel ofFig. 9, one can see that for the �+�� system, the universality holds to better than percentfor r� <� 50 fm.19Comparing Eqs. (54) and (55), one can see that the number NA of produced �+��atoms is determined by the number of free �+�� pairs in the region of small k�. So, NAis actually proportional to the ratio hj n0(r�)j2i0P=hj �k�(r�)j2ieqP in which the e�ects ofthe r�-dependence as well as the corrections due to non{equal emission times (t� 6= 0)and smoothness assumption are to a large extent compensated for, being practically thesame for the wave functions in continuous spectrum at k� ! 0 and discrete spectrumat r� � jaj. In fact, according to Eqs. (92-94), one can write the ratio of the �nite-sizecorrection factors at small relative momenta (k� � h1=r�iSLS) and moderate distancesbetween the particle emitters (hr�iSLS � jaj) as1 + �n1 + �(k�) � hj n0(r�= couln0 (0))j2iSLS0Phj �k�(r�)= coulk�0 (0)j2iSLSeqP � ����� N 0(n) couln0 (0)) �����2 1 + �0n1 + �(k�)= "1 + �(n) 2f0njaj# (1 +O(hr�2iSLSa2 ) +O(k�2hr�2iSLS)) ; (96)18The distribution of these directions has to be eventually corrected for the experimental acceptanceprovided the latter is asymmetric with respect to Q!�Q.19Note that �0n0 (not shown in Fig. 9) is negative and, contrary to �0n, it shows the strongest deviationfrom zero for n = 1, achieving a per mil level already at r� � 20 fm.24



thus leading to Eq. (33) up to a small correction due to the transition �0�0 ! �+�� (seeEq. (126)). Recall that though the k�{dependence of the correction factor in braces isquadratic at very low values of k�, in fact, in a wider k�{interval and for su�ciently smallvalues hr�iSLS <� 10 fm, it shows a quasi{linear and almost universal behavior (see Fig. 8and Ref. [1]).Note that a relation similar to Eq. (96) without the correction factors has been usedin Ref. [8] for a simple calculation of the number of produced atoms (see Eqs. (21) and(22)).20 Particularly, the n�3 dependence of the latter has been predicted. The correction2�(n)f0=(njaj) � 6f0=(na) slightly modi�es this dependence, the modi�cation being thelargest for low values of n. For example, for the �+��-atom (f0 � 0:2 fm), this correctionis about 0.3% at n = 1 (see also the central panel of Fig. 9).In Refs. [34, 35], the e�ect of the strong interaction on the n{dependence of the pio-nium wave function has been studied numerically, solving the corresponding Schr�odingerequations. Thus, in Ref. [34], the ratio Rn =  n0= couln0 and the di�erence �Rn = R1�Rnhave been calculated for n = 1�3 using an exponential form of the short{range potential.According to Eqs. (83), (90) and (92), one has, up to corrections O(f0=a) and O(r�2=a2):Rn �  n0(r�) couln0 (r�) := 1 + f0r� ; �Rn � R1 �Rn := f0jaj ��(1)� 1n�(n)� 1 + f0r�! : (97)From Fig. 1 of Ref. [34], one can deduce a value of � 0:15 fm for the scattering length f0to achieve an agreement with the prediction of Eq. (97) for the ratio Rn at d < r� � jaj.The di�erences �Rn, presented in Fig. 1 of Ref. [34] for n = 2 and 3, are however bya factor 1.6 higher than the corresponding predictions of Eq. (97). For example, for103�Rn at r� = 8 fm, n = 2 and 3, one can read from this �gure the values21 1.0 and 1.3while, Eq. (97) respectively predicts 0.6 and 0.8. This discrepancy may indicate that thecalculation error, declared in Ref. [34] to be better than 10�4, was underestimated by afactor of 5.In Ref. [35], a more re�ned numerical study of the n{dependence has been done ac-counting for the second channel (�0�0) and extended charges. The hadronic �� potentialshave been chosen to reproduce the phase shifts given by two{loop chiral perturbation the-ory. The quantity dn = n3=2 n0= 10 � 1 has been calculated for n = 1 � 4. Similar toEq. (97), one has for d < r� � jajdn � n3=2 n0(r�) 10(r�) � 1 := � f0jaj ��(1)� 1n�(n)� ; (98)up to corrections O(f0r�=a2) and O(r�2=a2). The results of numerical calculations pre-sented in Fig. 2 of Ref. [35] are in qualitative agreement with Eq. (98), dn being almostconstant (except for the region of very small r�) and showing the right n{dependence:dn � �(1 � 1=n). Similar to Ref. [34], the numerical results for jdnj are however higher,now by a factor of 2.5, than the predictions of Eq. (98) calculated with f0 = 0:2 fm whichshould correspond within � 10% to the choice of the potentials in Ref. [35]. Since the20Originally, this relation was obtained on the assumption of an instantaneous emission from a point-like region (r� � jaj) and a negligible short{range FSI [8], the latter shown later on as unnecessary[12].21One should correct the �gure by interchanging the curves. The author is grateful to O. Voskresenskayafor pointing out this misprint. 25



presence of the second channel leads to a negligible modi�cation of Eq. (98) (see nextchapter) and the correction due to the extended charges is also expected to be negligible(� �16hr2i�=a2), the discrepancy in the size of the correction dn has to be attributed tothe insu�cient calculation accuracy or, to the incorrect matching of the scattering length.6 The e�ect of residual chargeThe formalism of section 2 assumes a free motion of a given particle pair in the last stageof the collision. Here we will estimate the e�ect of the residual charge present in thecollisions involving nuclei. Since the energy of the collisions producing hadronic atomsis su�ciently large, this e�ect can be expected of minor importance. Therefore, we willestimate its upper limit considering rather unfavourable conditions.Generally, instead of the two-particle Bethe-Salpeter amplitude 	(+)Sp1p2 (x1; x2), the cor-relation function is determined by the amplitude 	(+)Sf�gp1p2 (x1; x2) representing the solutionof a complicated multi-body problem, taking into account interaction between the twoparticles and also their interaction with the residual system described by the quantumnumbers f�g. For our purpose, it is su�cient to approximate these quantum numbersby an e�ective (comoving with a given pair) pointlike residual charge Ze and consider athermal motion of the two particles with the temperature T � m� in the rest frame ofthis charge.Let us start with the hypothetical case of particles that interact with the charge Zebut their mutual interaction is "switched o�". In such a situation we can treat the systems(1; Z) and (2; Z) independently. Then the interaction with the Coulomb center just leadsto the substitution of the spatial parts of the plane waves eipixi by the usual Coulombwave functions: e�ipiri ! e�ipiri�ziZpi (ri), where �ziZpi (ri) = ei�iqAc(�i)F (�i�i; 1; i�i),�i = piri + piri, �i = (piai)�1, ai = (!iziZe2)�1 is the Bohr radius of the system (i; Z)(taking into account the sign of the interaction) generalized to the relativistic case bythe substitution mi ! !i of the particle masses by their energies, �i is the Coulomb s-wave phase shift, Ac(�i) is the Coulomb penetration factor and F (�; 1; z) is the con
uenthypergeometrical function; see Eqs. (23), (62) and (63). For the complete amplitude wehave:e	(+)Zp1p2 (x1; x2) = eip1x1+ip2x2�z1Zp1 (r1)�z2Zp2 (r2) � eiPXe�ik�r��z1Zp1 (r1)�z2Zp2 (r2): (99)Note that a small contribution of spin-dependent electromagnetic forces is neglected hereso that e	(+)SZ � e	(+)Z is independent of the total spin S of the particle pair.Let us now "switch on" the interaction between particles 1 and 2. Since we considerthe relative motion of the two particles at characteristic distances much slower comparedwith their motion with respect to the Coulomb center, it is natural to assume that in sucha case the plane wave e�ik�r� in Eq. (99) will be basically substituted by the Bethe-Salpeteramplitude  Seq (x) describing the relative motion of isolated interacting particles. After thissubstitution we get the amplitude in so called adiabatic (factorization) approximation [13]:	(+)SZp1p2 (x1; x2) = eiPX Seq (x)�z1Zp1 (r1)�z2Zp2 (r2): (100)Instead of the 6-dimensional correlation function R(p1; p2) we calculate the 1-dimensionalone, RZ(k�), with the numerator and denominator integrated over the simulated particle26



spectra. In the equal-time approximation,RZ(k�) = N(k�)Xi=1 XS �Sj S�k�i (r�i )�z1Zp1i (r1i)�z2Zp2i (r2i)j2,N(k�)Xi=1 j�z1Zp1i (r1i)�z2Zp2i (r2i)j2 ; (101)where N(k�) is the number of generated particle pairs in a given k� bin. To separatethe pure e�ect of the residual Coulomb �eld on particle correlations, we compare thecorrelation function RZ(k�) with the one, R"Z"(k�), taking into account for the latter thee�ect of the nucleus Coulomb �eld on one-particle spectra but not on particle correlations(i.e., simulating the argument r� independently of the arguments r1 and r2). Note thatdue to the velocity dependence of the correlation function, R"Z" = RZ=0 only at a �xedpair velocity v. In Fig. 10, we present the ratios of the �+�� correlation functions RZand R"Z" assuming that the pions are emitted in the rest frame of the residual charge Zaccording to the thermal law with a temperature of 140 MeV at the space-time pointsdistributed according to a product of Gauss functions with the dispersions r20 = c2� 20 . Onemay see that even for the radius as low as 2 fm the e�ect of the residual comoving chargeas large as Z = 60 is less than a few per mil. Taking into account that the e�ective radiusr0 is larger than 2 fm even for proton collisions with low-Z nuclei and that the e�ectiveresidual charge is only a fraction of the target nucleus charge, one can conclude that thee�ect of the residual charge is on a negligible level of a fraction of per mil.7 Two-channel systems7.1 Continuous spectrum in both channelsIt was implied until now that a long{time FSI takes place and can be separated in theBethe-Salpeter amplitudes in the near-threshold �nal state elastic transitions 1 + 2 !1 + 2 only. In principle, however, it can be separated also in the inelastic transitions,1+2! 3+4, characterized by a slow relative motion in both entrance and exit channels.The necessary condition for such a separation is an approximate equality of the sums ofparticle masses in the intermediate (m3+m4) and �nal (m1+m2) states. Some examplesare the transitions �+�� $ �0�0, ��K+ $ �0K0 or ��p$ �0n. For such processes onlythe second term in the upper diagram in Fig. 1 contributes, now with the particles 3; 4 inthe intermediate state. In the equal-time approximation, the corresponding amplitudesreduce to the wave functions describing a two-channel scattering of the particles 1; 2 withthe inverse direction of the relative three{momentum: k� ! �k� (the scattering is viewedin the diagram from right to left so that the �nal state particles 1; 2 are in the entrancescattering channel). We will denote the channels as � = f1+2g and � = f3+4g, and thecorresponding wave functions describing the scattering �! � and �! � - as  � and  �respectively. Outside the range of the strong FSI, r� > d, they can be written, for the �-and �{channel continuous spectrum, as [31]: ��k�(r�) = N (��) "e�ik�r�F (�i��; 1; i��) + f��c (k�) eG(��; ��)r� # ; ��k�(r�) = N (��)f��c (k�)s���� eG(��; ��)r� ! N (��)f��c (k�)s���� exp(i��)r� ; (102)27



Table 3: The �{channel momenta k�� calculated at the �{channel thresholds k�� = 0. Alsoshown are the relative shifts �k��=k�� arising from the non{relativistic approximation inthe second formula in Eq. (103).� �+�� ��K+ ��p K+K� K�p �pp! � ! �0�0 ! �0K0 ! �0n ! K0 �K0 ! �K0n ! �nnk��; MeV/c 35.5 11.3 28.0 i 62.9 i 58.6 i 49.3k��1� ; fm 5.6 17.5 7.0 -i 3.1 -i 3.4 -i 4.0�k��=k��; % -0.84 -0.07 -0.46 0.20 0.13 0.03where N (��) = ei�c(��)qAc(��), k� � k�� andk��2 = [m42 �m32 + (!�1 + !�2)2]24(!�1 + !�2)2 �m42 := ����k��2 + 2��(m1 +m2 �m3 �m4): (103)The approximate equality in Eq. (103) corresponds to the non{relativistic expressionsfor the energies: !�j = mj + k�2� =(2mj); j = 1 � 4. We consider here the systems withthe Coulomb interaction absent in the channel �, so a� = 1, �� = 0, Ac(��) = 1,eG(��; ��) = exp(i��) and �(��)=a� = ik��; the amplitude  � in Eq. (102) then reducesto the expression indicated by the arrow. The �{channel momenta at the �{channelthresholds (k�� = 0) for ��-, �K-, �N -, KK-, KN - and �NN{systems are given in table 3.This table also demonstrates that even close to the �{channel threshold, the use of thenon{relativistic approximation can lead to noticeable shifts in k��.Similar to the single{channel case, the amplitudesf��0c = f��0=[Ac(��)Ac(��0)]1=2; (104)where f��0 are the amplitudes of the low-energy s-wave scattering due to the short{rangeinteraction renormalized by the long{range Coulomb forces, �; �0 = �; �. The time{reversal invariance requires f��0 = f�0�. It is convenient to consider the amplitudes f��0cand f��0 as the elements of the symmetricmatrices f̂c and f̂ related by the matrix equationf̂ (k�) = [Ac(�̂)]1=2f̂c(k�)[Ac(�̂)]1=2: (105)The single{channel expression (69) for the amplitude fc can then be rewritten in a matrixform: f̂c(k�) =  K̂�1 � 2�(�̂)â !�1 ; (106)where the matrices â, �̂, �(�̂) and Ac(�̂) are diagonal in the (�; �){channel representation,for example, [Ac(�̂)]��0 = Ac(��)���0. The symmetric matrix K̂ has to be real for theenergies above both thresholds due to the two{channel s{wave unitarity condition [15]=f̂ = f̂+<k̂ f̂ ; (107)where the diagonal matrix k��0 = k�����0. Usually, the K̂-matrix is real also for negativekinetic energies (provided su�ciently fast vanishing of the short{range potential with the28



distance), and so it can be expanded in even powers of k� � k��, similar to Eqs. (60) or(61) with the parameters substituted by the corresponding matrices (e.g., f0 ! f̂0).Since, in the cases of practical interest, the particles (pions, kaons, nucleons) in thechannels � and � are members of the corresponding isotopic multiplets, one can assumethe parameter matrices diagonal in the representation of the total isospin [31]. Theelements of the amplitude matrix in the channel representation are then given by thecorresponding isospin projections. Particularly, for � = f�+��g, � = f�0�0g, one has:f��0 = 23f (0)0 + 13f (2)0 ; f��0 = f��0 = �p23 (f (0)0 � f (2)0 ); f��0 = 13f (0)0 + 23f (2)0 : (108)Analogous relations, with the substitutions (0) ! (1=2) and (2) ! (3=2), take placefor the channels � = f��p; ��K+; �+K�g, � = f�0n; �0K0; �0 �K0g. For the channels� = fK+K�;K�p; �ppg, � = fK0 �K0; �K0n; �nng, one hasf��0 = f��0 = 12(f (0)0 + f (1)0 ); f��0 = f��0 = �12(f (0)0 � f (1)0 ); (109)where the parameters f (0)0 and f (1)0 have now positive imaginary parts due to the e�ectiveinclusion of the additional channels opened at the energies of the elastic thresholds (k�� =0) in the reactions K �K ! ��; ��; �KN ! �0s�; �0s�; �NN ! mesons.Note that the use of the isospin relations (108) and (109) implies that the violation ofisotopic invariance is solely associated with the Coulomb factors Ac(�j) (strongly deviatingfrom unity at k�j < 2�=jajj) and the mass di�erences between the members of the samemultiplets (k�� 6= k��). These relations however neglect the direct violation of isotopicinvariance due to the renormalization e�ect of the Coulomb interaction on the scatteringlengths, usually leading to the shifts on the level of several percent.22The di�erence between the channel momenta can be neglected su�ciently far fromthe threshold. Then the matrix algebra can be avoided using the relations analogous toEqs. (108) or (109) directly for the complete amplitudes efjj0 in the absence of the Coulombinteraction23 and, switching on this interaction in a similar way as in the single{channelcase [36]: fjj0(k�) = ( 1efjj0(k�) + ik� � 2aj�(�j)�jj0)�1 [Ac(�j)Ac(�j0)]1=2: (110)7.2 Discrete spectrum in the �{channelOne can repeat the same arguments as for the single{channel case, starting from thegeneral solution in Eq. (75) with the substitution fc ! f��c . For a discrete energy levelEn = ��n2=(2�), the amplitude fc has to have a pole or, equivalently, det f̂�1c (i�n) = 0.Following Ref. [33] and introducing the matrix(Â�1)��0 = (K̂�1)��0 � i���0���k��; (111)22Note however that in the case of a large scattering length (e.g., for two protons), the contribution tothe direct isospin violation of order O(f0=a) can alone amount to several tens percent.23Note that Eqs. (108), (109) correspond to the two{dimensional unitary transformation f̂0 = Û�1f̂ 00Û ,U11 = U22 = cos'; U12 = �U21 = sin'. Since it applies also to the d̂0-matrix, one immediately arrivesat the same transformation of the complete amplitude f̂ in the case of absent Coulomb interaction andk̂ = k�1̂. 29



one can rewrite this requirement in a form of Eq. (84) modi�ed by the substitutionK(i�n)! A��(i�n) and thus, �x the discrete energy levels similar to Eq. (85):�n = �cn (1 + 2A���cn "1 +A���cn[�(n)� 1]� 4�23 O �(A��=a)2�#) ; �cn = (njaj)�1;(112)A�� = K�� � ik�� det K̂1� ik��K�� = K�� + ik��(K��)21� ik��K�� ; (113)where a = a�. Since K̂(i�n) = K̂(0)[1 + TrO(f̂0d̂0=(na)2)] and k��(i�n) = k��(0)[1 +O((nak��)�2)], one can safely make the substitutions K̂(i�n)! f̂0 � K̂(0) and k��(i�n)!k��(0) and write, with the relative errors O(a�2) less than a fraction of per mil,A��0 = K��0 � ik�� det K̂���0���1 � ik��K�� := f��00 � ik�� det f̂0���0���1� ik��f��0 ; (114)particularly, <A�� = K�� �K�� (k��K��)21 + (k��K��)2 := f��0 � f��0 (k��f��0 )21 + (k��f��0 )2 ;=A�� = k��(K��)21 + (k��K��)2 := k��(f��0 )21 + (k��f��0 )2 : (115)In Eqs. (114) and (115), k�� simply denotes k��(0) or k��(i�n). It can be seen from table 3that k��1� represents a scale which is intermediate between the Bohr radius jaj and theelements of the matrix f̂0. As a result, the terms like O(k��(f��00 )2=a) or O((ak��)�2) con-tribute less than a fraction of per mil and can be omitted. As for the terms O((k��f��00 )2),their contribution is on a per mil level and is retained.The s{wave solutions corresponding to the �{channel discrete spectrum are again givenby the second term in Eq. (75) (N (�n) = 0) with the �nite normalizationN 0 = Nf��c =A��introduced in the same way as in Eq. (88) modi�ed by the substitution K ! A��. Asfor the corresponding �{channel s{wave solutions  �n0(r�), they are given by the secondof equations (102) withNf��c = N 0A��f��cf��c = N 0 K��1� ik��K�� � N 0A��; (116)the second equality following from Eq. (113) and the explicit inversion of the symmetricmatrix f̂�1c :24 Df��c = K�� � ik�� det K̂; Df��c = K��;Df��c = K�� + 2�jaj det K̂; det K̂ = K��K�� � (K��)2;D = det f̂�1c det K̂ = 1� ik��K�� + 2�jaj(K�� � ik�� det K̂); (117)24Note that the product Df��0c is �nite since the amplitude pole for a bound state is compensatedby the corresponding zero of the factor D / det f̂�1c . For the continuous spectrum at the �-channelthreshold, K̂ = f̂0 and D = 1� ik��f��0 � (2i�=jaj)(f��0 � ik�� det f̂0).30



where � denotes here �(��); recall that �(��)=a� = ik�� due to the absent Coulombinteraction in the channel �. As a result, �n0(r�) = N 0(n)A�� eGr� = N 0(n)f��0 � ik�� det f̂01 � ik��f��0 eGr� "1 + TrO f̂0d̂0n2a2!# ; �n0(r�) = N 0(n)A��s���� eik��r�r� = N 0(n)f��01� ik��f��0 s���� eik��r�r� "1 + TrO f̂0d̂0n2a2!# ; (118)where eG = eG(�n; �n) with the arguments �n and �n taken at k�� = i�n (�n is expressedthrough f̂0 in Eqs. (112) and (115)), and N 0(n) =  couln0 (0)[1 + O(f��0 =a)] is �xed bythe normalization integral (89) for the wave function  ��n0 . It can be calculated alsoanalytically using Eq. (92) with the substitution f0 ! <A�� � f��0 (see Appendix B):jN 0(n)= couln0 (0)j2 � 1 = �(n)2<A��njaj � 4�2O0@ <A��a !21A : (119)Using Eqs. (117), one can express the amplitudes f��0c (k�) at k�� = 0 (� = �i�; K̂ = f̂0)through the elements of the A-matrix (related to the scattering lengths f��00 in Eq. (114))with the relative error O(a�2) less than a fraction of per mil:f��0c (0) = A��0 "1 + 2i�jaj A�� +O(a�2)#� 2i�jaj det f̂01 � ik��f��0 ���0���: (120)7.3 UniversalityComparing Eqs. (102) and (118), one may see that the universal r�{behavior of the s-wave amplitudes  � in continuous (k� ! 0) and discrete spectrum takes place with similaraccuracy as in the single{channel case. Thus, for the measures of the universality violationde�ned as in Eq. (93), one has25��;k�n0 (r�) = 4�O0@k��(f��0 )2a 1A + 4�2O (f��0 )2a2 !+ TrO f̂0d̂0n2a2!+O r�2a2 !+O(�2);��;k�n0 (r�) = TrO f̂0d̂0n2a2!+O r�2a2 !+O(�2): (121)The presence of the second channel manifests itself through a new scale k�� (see table 3),basically leading to the additional correction of 4�O(k��(f��0 )2=a)) which is still on thenegligible level less than a fraction of per mil.For the production cross sections, instead of Eqs. (54) and (55), we now have:
1
2 d6�d3p1d3p2 = 
1
2 d6��0d3p1d3p2 XS GS;�hj S;��k�(r�)j2ieqPS25For the amplitude  �, one can use the expansions in Eqs. (77) and (90), respectively modi�ed by thesubstitutions f0 ! f��c (0) and f0 ! A��. 31



+ 
3
4 d6��0d3p3d3p4 XS GS;�hj S;��k�(r�)j2ieqPS; (122)
bd3�Sbd3pb = (2�)3
1
2 d6��0d3p1d3p2GS;�hj S;�b (r�)j2i0PS+ (2�)3
3
4 d6��0d3p3d3p4GS;�hj S;�b (r�)j2i0PS ; (123)where pi = pbmi=(m1 +m2) in Eq. (123) and b = fn0g. Since the particles 1; 3 and 2; 4are usually the members of the same isospin multiplets, we can take 
1
2d6��0 := 
3
4d6��0as a common factor in Eqs. (122) and (123) and also put GS;� := GS;�.The two-channel e�ects in the production cross section, being quadratic in the ampli-tude f��0 , usually represent less than several percent of the strong FSI contribution (a frac-tion of percent in the cross section). Thus, for a near-threshold two-pion system producedaccording to a Gaussian r�-distribution (131) with the characteristic radius rG = 3 fm and,taking the two-pion s-wave amplitudes from Ref. [6] (f��0 = 0:186 fm, f��0 = �0:176 fm),the contributions of the FSI transitions �+�� $ �+�� and �+�� $ �0�0 to the �+��production cross section respectively compose 7:72% and 0:16%, ; these contributions aresomewhat higher, 9:66% and 0:20%, for the amplitudes from Ref. [4] (f��0 = 0:232 fm,f��0 = �0:192 fm). At large rG, the elastic and inelastic contributions vanish as f��0 =rGand jf��0 =rGj2 respectively. One should also account for the correction due to the devi-ation of the solutions in Eqs. (102) and (118) from the exact ones in the inner regionr� < d. Though this correction vanishes as r�3G , at rG = 3 fm it is still comparable tothe contribution of the inelastic two-pion transition, composing 0:25% and 0:20% for theamplitudes from Ref. [6] and [4], respectively.Note that assuming 
1
2d6��0GS;� := 
3
4d6��0GS;�, the correction to the correlationfunction at a given total spin S, total four-momentum P and a small generalized relativefour-momentum eq = f0; 2k�g ! 0 can be written as�R := Z d3r�WP (r�)f[j ��k�(r�)j2 + j ��k�(r�)j2]� [j e ��k�(r�)j2 + j e ��k�(r�)j2]g; (124)where WP (r�) = R dt�gP (t�; r�; 0)= R d4xgP (x; 0) is the normalized distribution of the vec-tor r� of the relative distances between the emission points in the pair c.m.s. and e denotes the solutions in Eqs. (102) extended to the inner region r� < d. In the case ofonly two open channels � and �, one can write the leading part of the correction as [31]26�R � �4�WP (0)Ac(��)�"jf��c j2 ddk�2 (K�1)�� + jf��c j2 ddk�2 (K�1)�� + 2<(f��c f���c ) ddk�2 (K�1)��# ; (125)at k� = 0, twice the derivatives of the inverse K-matrix coincide with the e�ective radiid��00 . Similarly, in the case of discrete spectrum, the leading correction to hj e �n0(r�)j2 +j e �n0(r�)j2i is also given by Eq. (125) with the substitutions Ac(��)! N 0(n) and f��0c !A��0.26In Ref. [31], the correction �R = W (0)J2 and J2 is expressed through the amplitudes f��0 in Eq.(44). It reduces to our Eq. (125) after a straightforward though lengthy algebra. For the Gaussian r�-distribution, Eq. (125) is valid up to subleading contributions O(k�2a1=rG) (see a footnote after Eq. (61))and O(f��0 d4=r5G). 32



It is important that the presence of the second channel practically does not modifythe ratio (96) of the �nite-size correction factors in discrete and continuous (k� ! 0)spectrum at moderate distances r� � jaj. The only modi�cations are the substitutionf0 ! <A�� � f��0 and the appearance of the negligible correction 4�O(k��(f��0 )2=jaj):1 + �n1 + �(k�) � [G�hj �n0(r�)j2iSLS0P + G�hj �n0(r�)j2iSLS0P ]=j couln0 (0)j2[G�hj ��k�(r�)j2iSLSeqP + G�hj ��k�(r�)j2iSLSeqP ]=j coulk�0 (0)j2 � ����� N 0(n) couln0 (0) �����2 1 + �0n1 + �(k�)= "1 + �(n)2<A��njaj #8<:1 +O hr�2iSLSa2 !+O(k�2hr�2iSLS) + 4�O0@k��(f��0 )2jaj 1A9=; : (126)8 Finite-size e�ects in the experiment DIRAC8.1 �+�� systemWe will use the results of the UrQMD transport code simulations of the pion productionin pNi interactions at 24 GeV in the conditions of the DIRAC experiment at CERN [19].Since we are interested in the region of very small relative momentaQ = 2k� < 20 MeV/c,where the angular distribution of the vector Q is isotropic for uncorrelated pions and, forQ < 10 MeV/c, the detector acceptance is practically independent of the direction ofthe vector Q, one can simplify the analysis integrating over this direction. The �nite-sizee�ect is then determined by the distribution of the relative distance r� between the pionproduction points in the pair c.m.s., irrespective of the angular distribution of the vectorr�. The simulated r�-distribution is shown in Fig. 2. We have checked that the tail ofthis distribution (r� > 50fm) is dominated by pion pairs containing at least one pionfrom the decays of the ! and �0 resonances with the respective path lengths of about30 and 900 fm in the rest frame of the decay pion; the path length l � � hpdeci=m� isdetermined by the resonance lifetime � and the four-velocity pdec=m� of the decay pion.As a consequence of the exponential decay law, the corresponding r�-distributions arenearly exponential ones except for the region of small r� dominated by the phase spacesuppression factor / r�2. Actually, these distributions may deviate from the exponentialones due to a continuous spectrum of the decay momenta and averaging over the emissionpoints of the second pion. We have found that the simulated �0 contribution (� 1% ofpion pairs at Q < 50 MeV/c) can be su�ciently well parametrized by a single exponentialformula interpolating between the phase space and exponential behavior:Xi dN(��0�i)dr� := n�0F(r�; r�0; l�0); (127)F(r�; r�0; l�0)= x22:2 (1� exp "�2:2x2  1 + 0:2x21 + 0:15x2r�0=l�01 + x5=125 !#) exp � r�l�0! ; x = r�r�0 ; (128)where r�0 = 2 fm, l�0 = 790 fm. At the same time, a good description of the !-contribution(� 19% of low-Q pion pairs) requires a superposition of the two exponential-like expres-sions: Xi 6=�0 dN(�!�i)dr� := n1!F(r�; r1!; l1!) + n2!F(r�; r2!; l2!); (129)33



where r1! = 1:07 fm, l1! = 43:0 fm, r2! = 2:65 fm, l2! = 25:5 fm and n1!=n2! = 0:991.The rest of the r�-distribution (due to the pions produced directly in the collision, inthe rescatterings or in the decays of resonances with the path lengths shorter than l!) ispeaked at � 3 fm and its main part (� 60% of low-Q pion pairs) including the tail forr� = 10� 100 fm can be e�ectively described by a power-like expression:M(r�; rM ; �; �) = r�2 "1 + � r�rM �2�#�2� ; (130)where rM = 9:20 fm, � = 0:656, � = 2:86; note that the tail vanishes as (r�)�5:5, i.e.much faster than the Lorentzian (� = � = 1). The remaining short-distance part ofthe r�-distribution (� 20% of low-Q pion pairs) is strongly shifted towards the originbecause the UrQMD code assumes the point-like regions of the decays and rescatterings;particularly, r� = 0 for � 8% of low-Q �+�� pairs. Therefore, we will represent this partby a Gaussian distribution: G(r�; rG) = r�2 exp � r�24r2G! ; (131)where the Gaussian radius rG is expected on the level of a few fm. As a result,Xi;j 6=!;�0 dN(�i�j)dr� := nMM(r�; rM ; �; �) + nGG(r�; rG): (132)The correction factors 1 + �(k�) and 1 + �n corresponding to the r�-distributions�0; !;M;G, required to calculate the �+�� production cross section in the continuousand discrete spectrum, are shown in Fig. 11. The two sets of histograms denoted bythe same lines (dotted, full, dash-dotted, dashed and full) correspond to the two-pionscattering amplitudes from Ref. [6] (lower) and Ref. [4] (upper). In increasing order,they correspond to the r�-distributions �0, !, G(r�; 3fm), M(r�; 9:20fm; 0:656; 2:86) andG(r�; 2fm). One may see that the correction factors corresponding to the �0-contributionare practically independent of the two-pion scattering amplitudes and, noticeably deviatefrom the in�nite-size correction factors 1+ �1(k�) = 1=Ac(�) (the curve) and 1+ �1n = 0.We thus do not include the �0-meson in the class of long-lived sources, unlike the �-mesonwith the path-length of � 105 fm.The calculation of the correction factors was done according to the two-channel ex-pressions given in the numerator and denominator of the �rst equality in Eqs. (126):1 + �(k�) := Dj ��k�(r�)j2 + j ��k�(r�)j2ESLSeqP =Ac(�); (133)1 + �n := Dj �n0(r�)j2 + j �n0(r�)j2ESLS0P =j couln0 (0)j2; (134)where � and � respectively denote the channels �+�� and �0�0. However, the accountfor the coupled �0�0 channel, as well as for the leading correction due to the approxi-mate treatment of the wave function inside the range of the strong interaction, does notpractically in
uence the results corresponding to the �0- and !-contributions and onlyslightly (< 1%) shifts up the correction factors corresponding to the short-distance M-and G-ones. A shift of the correction factors can arise also from the uncertainty in the34



s-wave elastic �+�� scattering length f0. The shift due to the di�erence of the two-pionscattering amplitudes from Ref. [6] (f0 = 0:186 fm) and Ref. [4] (f0 = 0:232 fm) is� 2 � 3% for the short-distance M- and G-contributions and � 1% for the !-one. Theglobal shifts are however not important since they can be absorbed in the product �g = �in Eqs. (27) and (28)In accordance with the results in table 2 and Fig. 8, one may see in Fig. 11 the nearlyuniversal slope of the factors 1 + �(k�) corresponding to the short-distance M- and G-contributions. In accordance with Eq. (72), the slope scales with f0 and is � 20% steeperwhen using the two-pion amplitudes from Ref. [4]. This is clearly seen in Fig. 12, wherewe plot the same correction factors as in Fig. 11 in a larger scale and with the subtractedintercepts 1+ �(0). At Q > 20 GeV/c, there is also seen � 5� 10% variation of the slopecorresponding to di�erent short-distance distributions.Figs. 11 and 12 also demonstrate the violation of the universality relation �n := �(0) upto � 0:4% for the short-distance and !-contributions and up to � 9% for the �0-one. Themost right panel in Fig. 12 shows that this violation is partly related to the e�ect of thestrong interaction on the normalization of the pionium wave function. Indeed, the di�er-ence �0n � �(0), corrected for this e�ect according to Eq. (32), shows weaker dependenceon the main quantum number n and, its short-distance part practically vanishes.In Fig. 13 we plot the correction factors corresponding to the mixture of 1% �0- and19% !-contributions, as expected from the UrQMD simulation; to show the e�ect of apossible uncertainty in the remaining short-distance part, we describe it by the Gaussianswith di�erent characteristic radii rG = 3 and 2 fm. To account for the uncertainty in thetwo-pion scattering amplitudes, we have used those from Ref. [6] (f0 = 0:186 fm) and Ref.[4] (f0 = 0:232 fm). One may see that the corresponding global variations of the correctionfactors compose � 5% and � 2%, respectively. In Fig. 14, we plot the same factors withthe subtracted values of the intercept 1 + �(0). One may conclude from this �gure thatthe uncertainty in the short-distance part of the r�-distribution is of minor importancefor the relative momenta Q < 20 MeV/c, including the Q-interval of � (4�20) MeV/c inwhich the non-atomic �+�� pairs are usually analyzed in the DIRAC experiment. As forthe e�ect of � 20% increase of the s-wave elastic �+�� scattering length, in the middleof the DIRAC Q-interval, i.e. at Q = 12 MeV/c, it leads to a decrease of the di�erence�(k�)� �(0) by � 0:0015.To estimate the e�ect of the uncertainties in the !- and �0-contributions, we plot inFig. 15 the di�erences �� �(0), varying these contributions by � 30%. One may see thatthe corresponding variations of �(k�) � �(0) at Q = 12 MeV/c compose � 0:0025 and� 0:0015, respectively.Concerning the uncertainty in the �0-contribution, one has to take into account that,in the considered Q-interval, the corresponding correction factor is quite close to thein�nite-size contribution 1=Ac. The latter is included in the �t of the non-atomic Q-spectrum and this essentially reduces the corresponding uncertainty in the correctionfactor 1 + �(k�). This is demonstrated in table 4 where the results of the �ts of the non-atomic �+�� spectra corresponding to di�erent mixtures of the �0-, !- and G-contributionsare presented. One may see that the rather conservative uncertainties in the short-distanceand �0-contributions lead to negligible variations of the �tted non-atomic low-Q spectrumon a level of a fraction of per mil.The inclusion of the in�nite-size contribution in the �t also essentially in
uences thesystematic shift related with the use of simpli�ed Eqs. (21) and (22). As seen from table35



Table 4: The relative di�erences �i(0) = [�i� �(0)]=[1+ �(0)] and �in = [�i� �n]=[1 + �n]resulting from the �ts (i = 1�6) of the non-atomic �+�� spectra corresponding to di�erentmixtures of the �0-, !- and G-contributions. Unless stated otherwise, the Gaussian radiusrG = 3 fm and the �t interval Q = 4�20 MeV/c. The �ts were done according to Eq. (27)with a constant �(k�) = �i, assuming about uniform population in Q.FIT i 1 2 3 4 5 6 Comment! % 19 25 13 19 19 19�0 % 1.0 1.0 1.0 1.3 0.7 1.0�� phase shifts [6] [6] [6] [6] [6] [4]�i(0) % -0.88 -1.39 -0.39 -0.93 -0.83 -0.63-0.92 -1.40 -0.45 -0.97 -0.88 -0.70 rG = 2 fm-0.72 -1.11 -0.34 -0.77 -0.68 -0.54 Q = 3 � 20 MeV/c�i(0)��1(0) % 0 -0.51 0.49 -0.05 0.05 0.250 -0.48 0.47 -0.05 0.04 0.22 rG = 2 fm0 -0.39 0.38 -0.05 0.04 0.18 Q = 3 � 20 MeV/c�in % -1.11 -1.60 -0.62 -1.14 -1.09 -0.93 n=1-0.88 -1.36 -0.41 -0.90 -0.86 -0.67 n=2-0.81 -1.30 -0.35 -0.83 -0.79 -0.60 n=3-0.78 -1.27 -0.32 -0.80 -0.76 -0.56 n=4-0.77 -1.25 -0.30 -0.79 -0.75 -0.54 n=5�in ��1n % 0 -0.49 0.49 -0.03 0.02 0.18 n=10 -0.48 0.47 -0.02 0.02 0.21 n=20 -0.49 0.46 -0.02 0.02 0.21 n=30 -0.49 0.46 -0.02 0.02 0.22 n=40 -0.48 0.47 -0.02 0.02 0.23 n=5
36



4, for 19% !-contribution the �t in the interval Q = 4 � 20 MeV/c leads to � 0:9%underestimation of the number of the non-atomic low-Q �+�� pairs, instead of � 0:8%overestimation expected from the correction factor 1 + �(k�) alone. The correspondingoverestimation of the numberN brA of breakup atoms is enhanced (in case of a homogeneoustarget) by the ratio of the number of correlated pions to the number of breakup atomsN corr�+��=N brA � 5 and composes � 4:5%. Taking into account � 1% underestimation ofthe number of produced atoms (see �1n in table 4), the overestimation of the breakupprobability composes � 5:5% and corresponds to � 14% overestimation of the pioniumlifetime.Taking rather conservative 30% and and 10% uncertainties in the !-contribution andthe s-wave elastic �+�� scattering length, the respective uncertainties in the breakupprobability compose (see the di�erences �i ��1 in table 4) � 3% = 5 � 0:5%+ 0:5% and� 0:7% = 5 � 0:12% + 0:1%, corresponding to � 7:5% and � 1:8% uncertainties in theextracted pionium lifetime. One can also see from table 4 that the �ts in the Q-intervalof 3� 20 MeV/c yield the systematic shifts and uncertainties by � 20% lower.It should be noted that the results in table 4 assume a uniform population of theQ-interval and neglect of the errors in Q. A more accurate estimate of the uncertaintiesand the optimization of the �t Q-interval require the �ts of the real �+�� spectra withthe account of the experimental resolution.8.2 ���� and �+�+ systemsAs a by-product, the experiment DIRAC provides a high statistics data on the correlationfunctions of identical charged pions which contains the information on the space-timecharacteristics of pion production and can be used to check the results of the UrQMDsimulations.Contrary to the case of the �+�� system, the correlation e�ect in the system of iden-tical pions extends and is measured up to the relative momenta Q � 200 MeV/c, soneither the distribution of the vector Q nor the detector acceptance can be consideredindependent of the direction of this vector. Since further the angular distribution of thevector r� is not isotropic (particularly, the characteristic width of the out component ofthe r�-distribution increases with the transverse momentum while those of the side andlongitudinal ones decrease), the required space-time information does not reduce to thedistribution of the relative distance r� between the pion production points in the pairc.m.s.; generally, the 3-dimensional distribution of the vector r� is required. Here we how-ever neglect this complication and calculate the 1-dimensional correlation function of twoidentical charged pions in the same way as for the previously considered case of the near-threshold �+�� system, i.e. assuming the uniform distribution of the cosine of the anglebetween the vectors Q and r� for the uncorrelated pions. The calculated correlation func-tions corresponding to the r�-distributions �0; !;M(r�; 9:20fm; 0:656; 2:86), G(r�; 3fm) andG(r�; 2fm) are shown in Fig. 16. In Fig. 17, we show the correlation function correspond-ing to 1% �0-, 19% !-, 60% M(r�; 9:20fm; 0:656; 2:86)- and 20% G(r�; 3fm)-contributions,as expected from the UrQMD simulations. To demonstrate the sensitivity to the !-contribution, We show in this �gure also the correlation functions calculated with thiscontribution varied by � 30% - the corresponding change in the peak value is � 1:5%.One can conclude, that the di�erent shape of the !-contribution as compared with theshapes of the short-distance ones (M and G) allows, in principle, to determine its fraction37



- the most critical parameter required to calculate the �nite-size �+�� correction factors.To control the systematic error due to the !-fraction to � 2% in the lifetime, one has todetermine this fraction better than to 10%, i.e. measure the correlation function of theidentical charged pions to a few per mil.9 ConclusionsWe have developed a practical formalism allowing one to quantify the e�ect of a �nitespace{time extent of particle emission region on the two-particle production in continuousand discrete spectrum. We have considered the e�ects of non-equal emission times in thepair c.m.s., the space{time coherence and the residual nucleus charge. We have shownthat these e�ects are on a per mil level and, being nearly the same for the near-thresholdfree and bound particles, can be safely neglected. We have applied this formalism tothe problem of lifetime measurement of hadronic atoms produced by a high energy beamin a thin target. Particularly, we have found that the neglect of the �nite-size e�ecton the pionium lifetime measurement in the experiment DIRAC at CERN could resultin a systematic shift comparable with the expected 10% statistical error. Based on thetransport code simulations, we have calculated so called correction factors that can beused to take into account the �nite size of the production region by multiplying theusual point-like production cross sections of the free and bound �+�� pairs. We haveshown that the uncertainties in these factors arise mainly from the uncertainties in the !-fraction and the s-wave elastic �+�� scattering length f0. Assuming rather conservative� 30% and � 10% uncertainties in the !-fraction and f0, one respectively arrives at� 7:5% and � 1:8% uncertainties in the extracted pionium lifetime. It is shown thatthe dominant uncertainty due to the !-fraction can be substantially diminished with thehelp of the DIRAC data on correlations of identical charged pions. Since the DIRAClifetime data can be used to constrain the scattering length f0 with � 5% error, onecan thus decrease the uncertainty in the extracted lifetime to � 3%. The uncertaintycan be further essentially reduced in future experiments using the multi-layer targets[2]. It will be then basically determined by the uncertainty in the calculated numberNA of produced atoms. Even for the conservative � 30% and � 10% uncertainties inthe !-fraction and f0, the corresponding uncertainties in the lifetime will be quite small:� 1:3% and � 0:3%. The uncertainties can be also somewhat reduced by decreasingthe lower boundary of the Q-interval. Thus decreasing it from 4 to 3 MeV/c reducesthe uncertainties by � 20%. To optimize the choice of the �t Q-interval and get a moreaccurate estimate of the uncertainties one should �t the real �+�� spectra and accountfor the experimental resolution.AcknowledgementsThe author thanks Vladimir Lyuboshitz, Leonid Nemenov, Jan Smol��k and Valery Yazkovfor useful discussions. This work was supported by the Grant Agency of the CzechRepublic under contracts 202/01/0779 and 202/04/0793.38



Appendix A: Non-equal emission timesWe consider here the role of non-equal emission times in the Bethe-Salpeter amplitude eq(x) = ei~qx=2+� (+)eq (x), where the correction � to the plane wave is given in Eq. (9).We will consider the amplitude in the pair c.m.s., in which the plane wave ei~qx=2 = e�ik�r�is independent of the emission times. First, we will prove the integral relation between theBethe-Salpeter amplitude and the corresponding non{relativistic wave function, derivedon the condition k�2 � �2 [10]: (+)eq (x) = Z d3r0�k�(r� � r0; t�) �k�(r0); (A.1)�k�(r� � r0; t�) = 1(2�)3 Z d3�e�i�(r��r0) exp(�i�2 � k�22m(t�) jt�j); (A.2)where m(t� > 0) = m2 and m(t� < 0) = m1.We start by splitting the product of the propagators into four terms, each containingonly two poles in the complex �0-plane, situated in the opposite upper and lower half-planes. Taking into account that in pair c.m.s. P = 0 and that the pair energy coincideswith its e�ective mass: P0 = m12, we getf(�2 �m12 + i0)[(P � �)2 �m22 + i0]g�1 == [(�0 � e!1 + i0)(�0 + e!1 � i0)(�0 �m12 � e!2 + i0)(�0 �m12 + e!2 � i0)]�1= [m122 � (e!1 � e!2)2]�1 ��f[(�0 � e!1 + i0)(�0 + e!1 � i0)]�1 + [(�0 �m12 � e!2 + i0)(�0 �m12 + e!2 � i0)]�1�[(�0 � e!1 + i0)(�0 �m12 + e!2 � i0)]�1 � [(�0 + e!1 � i0)(�0 �m12 � e!2 + i0)]�1g; (A.3)where e!i = (mi2+�2)1=2. Assuming now that the amplitude fS � fS(�0;m12� �0) is ananalytical function in the complex �0-plane, we can integrate over �0 using the residuetheorem. Consider �rst t� > 0. In this case the integration contour has to be closed inthe upper half-plane, Eq. (9) then giving� (+)eq (x) = 1�2m12e�i[m12+(m12�m22)=m12]t�=2 Z d3�e�i�r�m122 � (e!1 � e!2)2 ��[e�ie!1t�f(�e!1;m12 + e!1)� 1m12 + e!1 + e!2 � 12e!1���ei(m12�e!2)t�f(m12 � e!2; e!2)� 1m12 � e!1 � e!2 + i0 + 12e!2�]: (A.4)Since we are interested in the limit of small c.m.s. particle momenta: k�2 � �2 and sincethe integral (A.4) is dominated by �2 � k�2, we can use the following non{relativisticapproximations (recall that � = m1m2=(m1+m2) is the reduced mass of the two-particlesystem):m12 := m1 +m2 + k�22� ; m12 + (m12 �m22)=m12 := 2 m1 + m2m1 +m2 k�22� !e!i := mi + �22mi ; m122 � (e!1 � e!2)2 := 4m1m2; m12 � e!1 � e!2 := k�2 � �22� : (A.5)39



Retaining in the integral (A.4) only the dominant pole term � [m12� e!1� e!2+ i0]�1, weget � (+)eq (x) = 12�2 Z d3�e�i�r��2 � k�2 � i0 exp �i�2 � k�22m2 t�! f(m12 � e!2; e!2): (A.6)Using now the equalities � (+)eq (r�; t� = 0) � � �k�(r�) and �(3)(���0) = (2�)�3 R d3r0 �exp[i(�� �0)r0], we can write:� (+)eq (x) = 12�2 Z d3�0�(3)(�� �0) d3�e�i�r��02 � k�2 � i0 exp �i�2 � k�22m2 t�! f(m12 � e!02; e!02)= Z d3r0 Z d3�(2�)3e�i�(r��r0) exp(�i�2 � k�22m(t�) t�) 12�2 Z d3�0e�i�0r0�02 � k�2 � i0f(m12 � e!02; e!02)� Z d3r0�k�(r� � r0; t�)� �k�(r0); (A.7)where the �k�-function is given in Eq. (A.2). Noting that the �k�-function in the integral(A.7) acts on the plane wave e�ik�r0 as a �-function, we �nally arrive at the integral relationin Eq. (A.1) for t� > 0. The prove of this relation in the case of t� < 0 is done in a similarway, the integration �0-contour being now closed in the lower half-plane. The result is thesame as in Eqs. (A.4)-(A.7), up to the substitutions m2 ! �m1 in the time-dependentphase factor and e!2 ! m12 � e!1 in the arguments of the scattering amplitude f .At t� = 0 the function �k�(r� � r0; 0) = �(3)(r� � r0) and at t� > 0�k�(r� � r0; t�) = 18 �m2�t�� (1 � i)3 exp "i k�2t�2m2 + (r� � r0)2m22t� !# : (A.8)For negative t�-values, the substitution m2 ! �m1 has to be done in Eq. (A.8). It isclear from Eq. (A.8) that, at small k� (k� � m(t�)r�=jt�j), the function �k�(r� � r0; t�)practically coincides with the �-function �(3)(r� � r0) on condition (52).Since the particles start to feel each other only after both of them are created, itis clear that a large di�erence in the emission times generally leads to a suppression ofparticle interaction at small k�: j� (+)eq (x)j � j� �k�(r�)j; � (+)eq (x) ! 0 at jt�j ! 1.Particularly instructive is the case when one of the two particles is very heavy, say m2 �m1. Then the two-particle interaction is suppressed provided the light particle is emittedprior the emission of the heavy one (m(t� < 0) = m1 in Eq. (A.2)). Otherwise, the largemass m(t� > 0) = m2 prevents the suppression even if the light particle were emittedmuch later than the heavy one. Below we consider the e�ect of non-equal emission timeson two-particle production in some detail.We start with the FSI due to the short-range forces only. Inserting the spherical wave(58) into the integral relation (A.1) or (A.7), we get [10]� (+)eq (x) = f(k�)r� fi sin(k�r�) + 1 � i2 [E1(z�)eik�r� + E1(z+)e�ik�r�]g; (A.9)where z� = �m(t�)2jt�j �1=2 �r� � k�m(t�)jt�j� and E1(z) = zR0 dyeiy2 is the Fresnel integral. Notethat the length k�=(m(t�)jt�j) � lk� can be interpreted classically, for large k�r�, as a40



distance traveled by the �rst emitted particle until the creation moment of the secondone. The absolute value of the factor (r�� lk�) in the argument z+ (z�) thus correspondsto the maximal (minimal) possible c.m.s. distance between the particles at the later ofthe two creation moments. The e�ect of non-equal emission times however doesn't reduceto the modi�cation of the distance r�, it survives even at k� = 0. This e�ect vanishesin the limit of small jt�j, when z� � 1, E1(z�) ! (1 + i)=2 and (A.9) reduces to thespherical wave (58). In the opposite limit of large jt�j, when [m(t�)=(2jt�jr�2)]1=2 � 1,the interaction is suppressed and the scattered wave � (+)eq (x) tends to zero for arbitraryk�-values.In the simple static Gaussian model of independent one-particle sources described bythe amplitude (36), the applicability condition (52) of the equal-time approximation canbe roughly written in the form (53). Clearly, the latter condition is not satis�ed for veryslow particles emitted by the sources of a long lifetime. This is demonstrated in Figs. 3and 4 for the FSI contribution in the �0�0 correlation function.Note that the change of the character of the e�ect of non-equal times at v � 0:6 andits increase with the increasing velocity is not expected from condition (53). The increaseof the e�ect for relativistic particles (v ! 1) is speci�c for the systems of not very largesizes and lifetimes �0 � r0, when the population of the light-cone region r � vt is notnegligible. Indeed, in this region the arguments of the Fresnel integrals at k� = 0 can besmall even at large 
: z� � (
mjrL� tj=2)1=2, leading to the modi�cation of the sphericalwave.Consider �nally the e�ect of non-equal emission times on the correlations of twocharged particles. Since, at not very large jt�j, the function �k�(r� � r0) is close to the�-function, we can neglect the terms of higher orders in (r0=a) in Eq. (A.1).27 The non-equal time correction is thus mainly generated by the subleading term r�=a, similar tothe case of strong FSI, where it arises from a small �nite-size contribution f=r�. It con-cerns also the case of hadronic atoms since the Schr�odinger equation at a small negativeenergy ��b = ��2=(2�) practically coincides with that in continuous spectrum at zeroenergy. As a result, for r� � ��1 := njaj (n being the main atomic quantum number), ther�-dependence of the corresponding wave functions at given orbital angular momentum lis the same.Appendix B: Decay rate and normalizationThe decay rate (partial width) ��n of a bound �{channel state decay into the �{channel isgiven by the square of the wave function  �n0 in Eq. (118) (at a distance r� > d), multipliedby the product of the surface 4�r�2 and the relative velocity v� = k��=�� :28��n = 4�r�2 k���� j �n0j2 = 4� k���� jN 0(n)j2 (K��)21 + (k��K��)2 : (B.1)In the considered two{channel case, the �{channel is the only open one, so the decay ratecoincides with the inverse lifetime (total width) of the bound �{channel state which can27Of course, at large jt�j the neglect of these terms is not possible; in particular, the r0-dependence ofthe hypergeometric function F guarantees the vanishing of the Coulomb interaction at jt�j ! 1.28In case of two identical bosons in the channel �, the twice as large square of the symmetrized wavefunction is compensated by twice as small surface so that the result is the same.41



be calculated from the imaginary part of the energy En = ��n2=(2��):1=�n � �n = �2=En � 2<�n=�n=��: (B.2)Using Eq. (112), one has (neglecting =A�� as compared with the <A�� in the correctionterms) <�n = �cn h1 + 2<A���cn +O �(2<A���cn)2�i ;=�n = 2=A��(�cn)2 n1 + 2[�(n)� 1]<A���cn � 4�2O �(<A��=a)2�o ; (B.3)�n = 4�� n1 + 2�(n)<A���cn � 4�2O �(<A��=a)2�o (�cn)3=A��: (B.4)Using the relation (�cn)3 = �j couln0 j2 and Eq. (115) for =A��, one �nally gets, in agreementwith Refs. [33, 37]:�n = 4� k���� j couln0 j28<:1 + 2�(n)<A��njaj � 4�2O0@ <A��a !21A9=; (K��)21 + (k��K��)2 : (B.5)Inserting Eqs. (B.1) and (B.5) into the equality �n = ��n, one proves the relation (119)between the normalization factors N 0(n) and  couln0 (0).In the case of two or more open decay channels, the two-channel (�; �) matrix K̂ isno more real, particularly, in the presence of one additional channel j, one has:K�� = K�� + ik�j (Kj�)21 � ik�jKjj ; K�� = K�� + ik�jKj�Kj�1 � ik�jKjj ; K�� = K�� + ik�j (Kj�)21� ik�jKjj ; (B.6)where K��0 are the elements of a real three-channel matrix K.29 Generally, one has toaccount for the possible imaginary parts of the elements of the two-channel K-matrix aswell as, for a possibility of a pure imaginary value of the momentum k�� in the case of aclosed channel � (k�2� < 0, k�� = i(�k�2� )1=2, ��n = 0). Then30<A�� = <K�� � =k��<(K��)2 + <k��=(K��)2 + ���k�����2 h<K��<(K��)2 + =K��=(K��)2i���1 � ik��K�����2 ;=A�� = =K�� � =k��=(K��)2 �<k��<(K��)2 + ���k�����2 h<K��=(K��)2 + =K��<(K��)2i���1� ik��K�����2= k�� ����� K��1 � ik��K�� �����2 � �k�2� �+Xj kj ����� Df j�c1� ik��K�� �����2 = ��4�jN 0(n)j2 24��n +Xj �jn35 ; (B.7)where �(x) = 1 for x � 0, �(x) = 0 for x < 0. Inserting the last equality in Eqs. (B.7)into Eq. (B.4), one proves Eq. (119) for the case of any number of open decay channels.29Note that in the case of a two-pion system (� = �+��, � = �0�0), the third channel is j = 

 so thatthe elements Kj� and Kjj can be safely neglected. Then, only the element K�� acquires the imaginarypart: K�� = K�� + ik�j (Kj�)2.30The second expression for =A�� in Eq. (B.7) follows from a straightforward though lengthy matrixalgebra. The last equality follows from an obvious generalization of Eq. (B.1), using the relation K�� =Df��c . 42
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��f+���� pbpb � ������Figure 1: The diagrams describing production of particles 1 and 2 in continuous anddiscrete spectrum.
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Figure 2: The distribution of the relative distance r� between the pion production pointsin the pair c.m.s. simulated with the UrQMD transport code [18] for pNi interactionsat 24 GeV and the relative momenta in the pair c.m.s. Q = 2k� < 50 MeV/c in theconditions of the DIRAC experiment at CERN [19]. The curves are the results of the �tsto short-distance, ! and �0 contributions described in the text.
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Figure 3: The FSI contribution to the �0�0 correlation function calculated for di�erentvalues of the pair velocity v in a model of independent one{particle sources distributedaccording to a Gaussian law with the spatial and time width parameters r0 = 2 fm and�0 = 2 fm/c. The exact results (solid curves) are compared with those obtained in theequal{time approximation (dash curves).
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Figure 4: The same as in Fig. 3 for the pair velocity v = 0:1, the spatial width parameterr0 = 2 fm and di�erent values of the time width parameter �0.
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Figure 5: The functions Ac(�), <�(�) � h(�) and =�(�) = Ac(�)=(2�) de�ned inEqs. (23), (67) and (68). The solid and dash curves correspond to the attraction(� < 0) and repulsion (� > 0) respectively. For two{pion systems, the variablej�j�1 � jak�j approximately coincides with the relative three{momentum Q = 2k� inMeV/c: j�j�1 := 0:98Q=(MeV=c). The arrow in the �rst panel indicates the characteristicwidth j�j�1 = 2� of the Coulomb e�ect.
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Figure 6: The functions B(�; �) and P (�; �) de�ned in Eqs. (65), (66) and calculatedfor the �+�� system. The solid, dash and dash{dotted curves correspond to r� = 5, 15and 50 fm respectively. The dotted curves represent the functions B(�; 0) = sin �=� andP (�; 0) = cos � corresponding to the case of neutral particles.
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Figure 7: The function eG(�; �) de�ned in Eq. (64) and calculated for the �+�� system.The solid, dash and dash{dotted curves correspond to r� = 5, 15 and 50 fm respectively.
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Figure 8: The �+�� correlation function at a �xed separation r� divided by the Coulombpenetration factor: R=Ac = hje�ik�r�F + fc eG=r�j2i, and the corresponding main con-tributions due to the interference term and the modulus squared of the hypergeometricfunction (see the �rst of Eqs. (71)). The solid, dash and dash{dotted curves correspondto r� = 5, 15 and 50 fm respectively. The calculation is done in the approximation of aconstant scattering amplitude fc(k�) = f0 = 0:232 fm, the averaging assumes the uniformdistribution of the cosine of the angle between the vectors r� and k� = Q=2. The dot-ted curves in the lower panel represent the s{wave Coulomb contribution B2(�; �) to thequadratic term. 52



Figure 9: Comparison of the approximate �+�� atomic wave function  appn0 (r�) and the�+�� wave function in continuous spectrum  �k�(r�) at k� ! 0, respectively de�ned inEqs. (91) and (62) (f0 = 0:232 fm), with the exact s{wave solution outside the range ofthe strong interaction  n0(r�) given in Eq. (87): �appn (r�) = [ appn0 (r�)= n0(r�)]2 � 1 and�k�=0n (r�) = hj[ �k�(r�)= coul�k�(0)]=[ n0(r�)=N 0(n)]j2i � 1, k� ! 0; the averaging in thelatter expression is done over the uniform distribution of the cosine of the angle betweenthe vectors r� and k� = Q=2. The central panel shows �appn (r�) assumingN 0(n) =  couln0 (0)in Eq. (91) in correspondence with the ansatz (96). The curves in the increasing ordercorrespond to n = 1; 2; 3; 10. 53
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Figure 10: The ratios of the �+�� correlation functions RZ and R"Z". For the latter,only one-particle spectra are in
uenced by the e�ective comoving charge Z. The pions areassumed to be emitted in the rest frame of a pointlike charge Z according to the thermallaw with a temperature of 140 MeV. The distribution of the space-time coordinates ofthe particle sources is simulated as a product of Gauss functions with the dispersionsr20 = c2� 20 . The full broken line corresponds to Z = 30; r0 = 2 fm, the dash and dottedones - to Z = 60; r0 = 2 and 3 fm, respectively.54
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