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Preface

This note is prepared not in usual article style, which means that it does not
include full needed information, proof of all statements, complete description of the
experiment and even References. The note has the main aim to make available the
final experimental information about pion multiple scattering in the DIRAC setup.
Certainly, the full information is available, but due to its large amount, it takes a
lot of time to prepare usual scientific note. Of course, it will be made in the future.



1 Introduction

The knowledge of the multiple scattering of pions in the DIRAC setup elements,
especially in the target, plays a crucial role in the DIRAC experiment. An essential
part of systematic error in the experiment originates from uncertainties in the
description of multiple scattering. The modern experimental status of the multiple
scattering in a ”thin” samples, presented in scientific literature, does not allow to
describe multiple scattering with necessary precision.

This note is the first attempt to study multiple scattering in the frame of the
DIRAC experiment. Experimental data presented in the note were collected in the
DIRAC run2003.

Six samples prepared for the measurement were equivalent to Ni-target, Al-
window, MSGC, SFD-X(Y ), SFD-W and IH and had exactly the same compo-
sition as the real parts of the setup. Size of each sample was about 100 × 25mm2.
All samples were placed just after DC3 module in the T2- spectrometer arm (see
Fig. 1).

Two peculiar features of the experiment define our procedure: 1) Contrary to all
other multiple scattering measurements, in our case particles crossing the samples
do not have fixed momentum value, but belongs to the momentum range (1.5 −

2.5)GeV/c; 2) Due to very small thickness of the samples, in most cases the scale
of multiple scattering is comparable with the DC-system resolution, and in case of
IH is much smaller. For the latter reason it was impossible to determine multiple
scattering in the IH-sample with required accuracy (∼ 1%).

Figure 1: Experimental setup of the DIRAC experiment: T - target station, MSGC
- micro-strip gas chambers, IH - ionization hodoscopes, SM - spectrometer magnet,
DC - drift chamber system, V H - vertical hodoscopes, HH - horizontal hodoscopes,
Ch - Cherenkov counters, Ps - preshower detectors, Mu - muon scintillation
counters, T1 and T2- spectrometer arms.
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The plane projected angle (θ) between the two parts of a track, before and
after the sample plane, was used in the analysis. The first part of the track was
reconstructed in DC1-DC3 modules. The second part of this track was defined by
the crossing point of the first track part with the sample plane and by coordinates
detected in the DC4 module. The tracking procedure was deeply tested, to be sure
in unbiased result.

Distortion of tracks crossing the samples depends on multiple scattering in the
samples and the accuracy of the DC-system, and distortion of tracks crossing the
sample plane in the vicinity of the corresponding sample depends only on accuracy of
the DC-system. Using projected angle distributions for these two kinds of events, it
is possible to obtain the pure multiple scattering distribution. It is well known
in mathematics , that this procedure is so-called the ”ill-posed problem”. To
solve this problem, some kind of regularization procedure is needed. We used the
statistical regularization method, which is the most attractive in our case, because
our experimental data are statistical ones by nature. In addition, this method
provides not only solution of the problem, but gives the accuracy value of the result.

Below we present:

• Multiple scattering measurement analysis based on the Moliere theory

• Multiple scattering experimental data analysis

• Multiple scattering experimental data fit.

2 Multiple scattering analysis with the Moliere theory

All steps of our procedure were tested with simulated events generated according
to the Moliere theory of multiple scattering, because this theory is the most widely
used for simulation. Standard Moliere code from the GEANT package was slightly
modified. The Fano correction, which introduces in the theory the scattering on
atomic electrons, was implemented. Also some code internal tables were extended
to make the routine more suitable for very thin samples.

As mentioned in Introduction, particles crossing the samples belongs to the
momentum range (1.5 − 2.5)GeV/c. This makes impossible to perform analysis
for any particular momentum with reasonable statistics. Fortunately, a theoretical
treatment of the Moliere theory shows momentum independence of the multiple
scattering distribution with respect to θ×p variable for the DIRAC momentum
range. To confirm this statement, the θ×p-distribution was simulated for four
momentum ranges (1.6− 1.8− 2.0− 2.2− 2.4)GeV/c, according to the experimental
momentum distribution. The result for Ni-sample is presented in Fig. 2. It is seen
the perfect coincidence of the distributions. In the next section this statement is
illustrated on experimental data.

In Introduction the statistical regularization method was mentioned. Correct-
ness of our procedure for extraction of pure multiple scattering distribution from
the data is illustrated in Fig. 3. In this figure the a-distribution was simulated
according to the Moliere theory, the b-distribution presents the experimental DC-
system resolution, c-distribution is a convolution of the a- and b-distributions and
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corresponds to the tracks going through the sample. The reconstructed pure multiple
scattering distribution presented in the d-box must be compared with the initial
distribution in the a-box. Perfect coincidence of the distributions is evident.
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Figure 2: θ×p-dependence of the Moliere theory in Ni-sample for four momentum
ranges.
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Figure 3: Ill-posed inverse problem solving for the Moliere distribution in Ni-
sample. a - original multiple scattering distribution; b - drift chamber resolution;
c - convolution of the a and b-distributions; d - reconstructed multiple scattering
distribution.
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3 Multiple scattering experimental data analysis

Fig. 4 illustrates typical experimental distributions ( a and b ) and result of the
reconstruction procedure ( c and d ). It is needed to draw attention to some
irregularities existing at the edges of reconstructed multiple scattering distribution
( c-box). The value of this irregularity depends on available statistics and, of course,
is less than the corresponding reconstruction error ( d-box). Nevertheless, it is
necessary to keep in mind this feature. For this reason it is incorrect to compare
pure R.M.S.-values of reconstructed distributions.
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Figure 4: Ill-posed inverse problem solution for experimental data in Ni-sample. a -
drift chamber resolution; b - distribution for particles which cross the Ni-sample; c -
reconstructed multiple scattering distribution; d - reconstructed multiple scattering
error distribution.
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Fig. 5 is a complete analog of Fig. 2 and demonstrates p-independence of the
θ×p-distributions for experimental data. As mentioned just above, the irregularity
at the edges is rather visible due to small statistics. For comparison of these four
distributions the Gaussian fit of the central part was made. The Gaussian Sigma-
values are rather close to each other, taking into account small statistics.
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Figure 5: θ×p-dependence of the reconstructed multiple scattering in Ni-sample
for four momentum ranges. Solid line is the Gaussian fit of the central part of the
distributions.
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4 Multiple scattering experimental data fit

Different functions to describe multiple scattering distribution were tested. Some of
them give practically the same good description quality. Finally, a three-Gaussian
mixture (3G) function (F ) was chosen. The main advantage of this function consists
in a simple way of summing the errors.

F (x) = N ×

(

c1 × exp

(

−
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2σ2

1

)

+

c2 ×

σ1

σ2

× exp

(

−
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2

)

+

c3 ×
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× exp
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−

x2

2σ2

3

)

)

, where

(1)

x = θ × p (rad × GeV/c),

N − normalization factor,

c1 = α1 + β1

√

l

X∗

0

, σ1 = γ1 + δ1

√

l

X∗

0

,

c2 = α2 + β2

√

l

X∗

0

, σ2 = γ2 + δ2

√

l

X∗

0

,

c3 = 0.1c2 , σ3 = 2.75σ2 .

(2)

X∗

0
-parameter is, in a certain sense, an effective radiation length, which must

be determined in such a way that it describes the particular multiple scattering
distribution.

l is a sample thickness.
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4.1 Ni data

Fig.6 shows reconstructed experimental multiple scattering distribution with error
bars together with the 3G-function fit. Set of parameters, used in 3G-function is
presented lower on this page. High quality of the fit is clear visible. Fit parameter
P2 corresponds to the Ni-sample thickness and equals the true thickness value.
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Figure 6: The 3G-function fit of the experimental multiple scattering distribution
in the Ni-sample.

Set of parameters which are used in 3G-function (see formula 1):

α1 = 0.692870 , β1 = 0.710858 ,

α2 = 0.279209 , β2 = −0.646233 ,

γ1 = −0.913335 × 10−4 , δ1 = 0.0110215 ,

γ2 = −0.938077 × 10−4 , δ2 = 0.0172151 .

(3)

Effective radiation length equals X∗

0
=1.63765cm which must be used instead

of the standard value X0=1.42336cm. Consequently, our measurement gives more
narrow distribution than predicted by the standard Moliere theory.
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4.2 Al data

Fig.7 shows reconstructed experimental multiple scattering distribution with error
bars together with the 3G-function fit. Set of parameters, used in 3G-function is
presented lower on this page. High quality of the fit is clear visible. Fit parameter
P2 corresponds to the Al-sample thickness and equals the true thickness value.
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Figure 7: The 3G-function fit of the experimental multiple scattering distribution
in the Al-sample.

Set of parameters which are used in 3G-function (see formula 1):

α1 = 0.716504 , β1 = 0.566955 ,

α2 = 0.257723 , β2 = −0.515414,

γ1 = −0.916234 × 10−4 , δ1 = 0.0112173 ,

γ2 = −0.920313 × 10−4 , δ2 = 0.0168419 .

(4)

These parameters are used also for MSGC-, SFD-X- and SFD-W -samples.
Effective radiation length, which must be used, equals X∗

0
=10.6855cm instead of

the standard value X0=8.893cm. Consequently, our measurement gives more narrow
distribution than predicted by the standard Moliere theory, as in case of Ni-sample.
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4.3 MSGC data

Fig.8 shows reconstructed experimental multiple scattering distribution with error
bars together with the 3G-function fit. Set of parameters, used in 3G-function is
presented in section 4.2. High quality of the fit is clear visible.

Because the MSGC structure is rather complicate, we did not try to describe the
radiation length of the sample. Moreover, contrary to Ni and Al, it is not necessary
for the DIRAC to have thickness dependence of the 3G-function. If to use radiation
length of the glass X∗

0
= X0 = 12.3cm, then the fit parameter P2 corresponds to

the MSGC-sample thickness P2 = l = 0.0662468cm, which is rather reasonable.
Really, we must use the value l/X∗

0
= 0.538592 × 10−2 for the simulation. The last

comment is also valid to the SFD-X and SFD-W -samples.

Theta*p (rad*GeV/c)

P
ro

ba
bi

li
ty

MSGC)

0

0.01

0.02

0.03

0.04

0.05

0.06

-0.006 -0.004 -0.002 0 0.002 0.004 0.006

Figure 8: The 3G-function fit of the experimental multiple scattering distribution
in the MSGC-sample.
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4.4 SFD-X data

Fig.9 shows reconstructed experimental multiple scattering distribution with error
bars together with the 3G-function fit. Set of parameters, used in 3G-function is
presented in section 4.2. High quality of the fit is clear visible.

If to use the scintillator radiation length X∗

0
= X0 = 42.4cm, then the fit

parameter P2 corresponds to the SFD-X-sample thickness P2 = l = 0.353468cm,
which is rather reasonable. Really, we must use the value l/X∗

0
= 0.833651 × 10−2

for the simulation.
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Figure 9: The 3G-function fit of the experimental multiple scattering distribution
in the SFD-X-sample.
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4.5 SFD-W data

Fig.10 shows reconstructed experimental multiple scattering distribution with error
bars together with the 3G-function fit. Set of parameters, used in 3G-function is
presented in section 4.2. High quality of the fit is clear visible.

If to use the scintillator radiation length X∗

0
= X0 = 42.4cm, then the fit

parameter P2 corresponds to the SFD-X-sample thickness P2 = l = 0.316869cm,
which is rather reasonable. Really, we must use the value l/X∗

0
= 0.747333 × 10−2

for the simulation.
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Figure 10: The 3G-function fit of the experimental multiple scattering distribution
in the SFD-W -sample.

5 Conclusion

The formula(1) together with proper parameters presented in the note can be used
for simulation of multiple scattering in the most important elements of the DIRAC
setup. This formula describes the thickness dependence of the multiple scattering
in the Ni-target and in the Al- window as well as in the whole MSGC, SFD-X
and SFD-W detectors.
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