EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

DIRAC Note 2005-22 10 November 2005

FRITIOF6: the test of Q- and $\cos\theta$ -distributions for $\pi\pi$ -pairs

O.Gorchakov

 $\begin{array}{c} {\rm GENEVA} \\ {\rm 2005} \end{array}$

1 Simulation and results

Our goal was to check if the Q-distribution of pion pairs is proportional to Q^2 and $\cos\theta$ distribution is flat. We used the FRITIOF6 for it. GEANT and ARIANE were not used. There is no restriction on pion angle.

The results are shown on Fig. 1 - 16. First eight pictures represent the short lived sources, last eight ones - long lived ones $(\eta, \eta' \text{ and } \Sigma^0)$. Such weak decayed particles like Λ, K_S^0, Σ^+ and Σ^- were treated as stable ones.

The distributions were fitted by the polynomials like $a_0 + a_1 * Q$, $a_0 + a_1 * \cos\theta$ or $a_0 + a_1 * Q + a_2 * Q^2$. The corresponding values of a_0, a_1 and a_2 are presented in the figure captions.

Figure 1: The dN/dQ distribution of short lived pion pairs.

Figure 2: The $dN/dQ/Q^2$ distribution of short lived pion pairs.

Figure 3: The $dN/dQ/Q^2$ distribution of short lived pion pairs. The fitting function is $dN/dQ/Q^2 = a_0 + a_1 * Q$ and $a_1/a_0 = (-3.1 \cdot 10^{-4} \pm 7.1 \cdot 10^{-5})(MeV/c)^{-1}$. If the fitting function is $dN/dQ/Q^2 = a_0 + a_2 * Q^2$ then $a_2/a_0 = (-9.4 \cdot 10^{-6} \pm 2.1 \cdot 10^{-6})(MeV/c)^{-2}$.

Figure 4: The distribution of short lived pion pairs on $\cos\theta$. Q < 25 MeV/c. The fitting function is $dN/d\cos\theta = a_0 + a_1 * \cos\theta$ and $a_1/a_0 = 1.1 \cdot 10^{-2} \pm 6 \cdot 10^{-4}$.

Figure 5: The $dN/dQ/Q^2$ distribution of short lived pion pairs.

Figure 6: The $dN/dQ/Q^2$ distribution of short lived pion pairs. The fitting function is $dN/dQ/Q^2 = a_0 + a_1 * Q$ (at Q > 10 MeV/c) and $a_1/a_0 = (-6.1 \cdot 10^{-4} \pm 6.1 \cdot 10^{-7}) (MeV/c)^{-1}$

Figure 7: The $dN/dQ/Q^2$ distribution of short lived pion pairs. The fitting function is $dN/dQ/Q^2 = a_0 + a_1 * Q + a_2 * Q^2$ (at Q > 10 MeV/c) and $a_1/a_0 = (-1.7 \cdot 10^{-4} \pm 8.9 \cdot 10^{-7})(MeV/c)^{-1}$, $a_2/a_0 = (-7.5 \cdot 10^{-6} \pm 7.7 \cdot 10^{-9})(MeV/c)^{-2}$.

Figure 8: The distribution of short lived pion pairs on $\cos\theta$. Q < 500 MeV/c.

Figure 9: The dN/dQ distribution of long lived pion pairs.

Figure 10: The $dN/dQ/Q^2$ distribution of long lived pion pairs.

Figure 11: The $dN/dQ/Q^2$ distribution of long lived pion pairs. The fitting function is $dN/dQ/Q^2 = a_0 + a_1 * Q$ and $a_1/a_0 = (-5 \cdot 10^{-4} \pm 6.9 \cdot 10^{-5})(MeV/c)^{-1}$. If the fitting function is $dN/dQ/Q^2 = a_0 + a_2 * Q^2$ then $a_2/a_0 = (-1.5 \cdot 10^{-5} \pm 2.0 \cdot 10^{-6})(MeV/c)^{-2}$.

Figure 12: The distribution of long lived pion pairs on $\cos\theta$. Q < 25 MeV/c. The fitting function is $dN/d\cos\theta = a_0 + a_1 * \cos\theta$ and $a_1/a_0 = 2.3 \cdot 10^{-2} \pm 5.7 \cdot 10^{-4}$.

Figure 13: The $dN/dQ/Q^2$ distribution of long lived pion pairs.

Figure 14: The $dN/dQ/Q^2$ distribution of long lived pion pairs. The fitting function is $dN/dQ/Q^2 = a_0 + a_1 * Q(at Q > 10 MeV/c)$ and $a_1/a_0 = (-8.6 \cdot 10^{-4} \pm 5.9 \cdot 10^{-7})(MeV/c)^{-1}$

Figure 15: The $dN/dQ/Q^2$ distribution of long lived pion pairs. The fitting function is $dN/dQ/Q^2 = a_0 + a_1 * Q + a_2 * Q^2$ (at Q > 10 MeV/c) and $a_1/a_0 = (-1.5 \cdot 10^{-4} \pm 8.5 \cdot 10^{-7})(MeV/c)^{-1}$, $a_2/a_0 = (-1.2 \cdot 10^{-5} \pm 7.5 \cdot 10^{-9})(MeV/c)^{-2}$.

Figure 16: The distribution of long lived pion pairs on $\cos\theta$. Q < 500 MeV/c.