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Abstract

The DIRAC analyzes π+π−-pairs with small relative momenta Q in their center
of mass system in order to find out signal from the pionium ionization in target.
The pionium ionization is in concurrence with the pionium annihilation which is
mainly defined by the charge-exchange process π+π− → π0π0 with the theoretically
predicted lifetime (2.9 ± 0.1) · 10−15 s. Thus the pionium lifetime can be deduced
from the experimentally defined probability of pionium ionization if the dependence
of the pionium ionization probability in the target as a function of its lifetime is
established. Based on ionization cross-sections of pionium with target atoms we
perform the first direct calculation of the pionium ionization probability in the
target.

Introduction

The main task of this work is the direct (based on ionization cross-sections) calculation
of the pionium ionization probability in the target. The formalism of pionium dynamics
based on a set of the probabilistic kinetic equations is reminded in Sect. 1. Section 2 is
devoted to the direct calculation of the ionization probability.

1 Dynamics of a pionium in the target

Pionium atoms are Coulomb bound system of two oppositely charged pions. They can be
created in a bound state from inelastic proton-nuclei collisions with the probability given
by [1]

dσA

d~PA

= (2π)3 |Ψ(0)|2
E

M

dσ0
s

d~p+d~p−

∣

∣

∣

∣

~p+≈~p−

, (1)

where
dσ0

s

d~p+d~p−
is the double inclusive cross section of π+ and π− pairs without interaction

in the final state with both pions produced either directly in hadronic processes or through
short-lived resonances. The production of the pionium atoms with the angular momentum
l > 0 is suppressed. The square of the S-wave function modulus at zero separation can
be approximated in the following way [2]

|Ψn0(0)|2 = (1 + δn)
∣

∣ΨC
n0(0)

∣

∣

2
, (2)

where ΨC
n0(0) is the pure Coulomb wave function of the π+π− atom at zero distance

and the correction factor (1 + δn) takes into account the effect of finite-size of the pion
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production region and the two-pion strong interaction in the final state. It was found
that this correction shifts the probability of ionization on per mille level, therefore we will
use pure Coulomb wave functions hereafter. For them only nS states are non-zero in the
origin

∣

∣ΨC
nlm(0)

∣

∣

2
=







(αmπ/2)3

πn3
if l = 0,

0 otherwise.
(3)

If we normalize probability of atom production to unity then the probability of atom
production in the |nlm〉 state reads

pnlm(0) =

∣

∣ΨC
nlm(0)

∣

∣

2

∑∞
n=1 |Ψ

C
nS(0)|

2 =
δl0

n3
∑∞

n=1 1/n3
=

δl0

n3ζ(3)
, (4)

p100(0) = 0.832, p200 = 0.104, p300 = 0.031. (5)

After production atom can either annihilate (mainly through π+π− → π0π0 process1)
or electromagnetically interact with target atoms.

The partial decay width of the pionium in 1S state is [5]:

Γ2π0 =
2

9
α3

√

m2
π+ − m2

π0 −
1

4
m2

π+α2(a0
0 −a2

0)
2m2

π+(1+ δΓ), δΓ = (5.8±1.2)×10−2. (6)

The (a0
0 − a2

0) difference of the pion-pion S-wave scattering lengths with isospin 0 and 2
have been calculated [6] within the framework of standard chiral perturbation theory [7]

a0
0 − a2

0 = (0.265 ± 0.004)m−1
π+. (7)

This difference leads to the predicted value of the pionium lifetime in the ground state

τ1S = (2.9 ± 0.1) · 10−15 s. (8)

While lifetime in nS states reads τnS = τ1S
|Ψ1S(0)|2

|ΨnS(0)|2
= τ1Sn3. Therefore the probability

for a pionium with a laboratory momentum pA to annihilate per unit length in target
material is

W anh
nlm =

1

λanh
nlm

=







1

γβcτn

=
2mπ

pAτ1Sn3
in nS states,

0 in other states.
(9)

While crossing the target a pionium electromagnetically interacts with target atoms.
As the result a π+π− atom can be either ionized or transit from the initial bound state
|nilimi〉 to another bound state |nf lfmf〉 (excitation/de-excitation). Hereafter we will
denote initial and final bound states as |i〉 and |f〉, respectively.

The probability of an ionization per unit length from the state |i〉 is given by

W ion
i =

1

λion
i

=
ρNA

A
σion

i , (10)

where ρ is the target density, A is its atomic weight, NA is the Avogadro constant and
σion

i is the ionization cross section.

1Another annihilation channel π+π− → 2γ amounts only about 0.3% [3, 4].
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The probability of a pionium excitation per unit length from the state |i〉 to the final
state |f〉 is given by

W f
i =

1

λf
i

=
ρNA

A
σf

i = W i
f , (11)

where σf
i is the discrete (bound-bound) transition cross section.

The total cross section gives the probability of an atom to undergo an electromagnetic
interaction

σtot
i =

∑

f

σf
i + σion

i . (12)

Total cross sections can be calculated owing to the completeness of the eigenstates of the
Coulomb Hamiltonian.

Total and transition cross sections for any bound states were initially calculated in the
Born approximation with the static potential of target atoms [8]. Later more accurate
set of cross sections was derived which takes into account relativistic effects and target
excitations [9]. Moreover in the latter work authors calculated ionization cross sections
which provides the possibility to perform direct calculation of the pionium ionization
probability in the target, which is the subject of this work. Comparison between different
sets of cross sections was performed [10], where authors found that uncertainties in most
precise sets of cross-sections for Ni target will cause only 1% uncertainty in the pionium
lifetime. Uncertainty due to the accuracy of cross sections is expected to dominate
precision of the ionization probability dependence on the pionium lifetime.

The dynamics of the pionium interaction with target atoms is supposed to be described
by a set of kinetic equations [8] using the probabilities pi(s) to find the π+π− atom in
the definite quantum state |i〉 at a distance s from the production point. This approach
ignores any interference between different pionium bound states. For low n most of
interference effects are suppressed at typical pionium momenta in DIRAC (3 ÷ 8 GeV/c)
as the mean free path between pionium inelastic interactions is usually longer than the
formation time of atomic system multiplied by its velocity. Nevertheless even for low n
some interference effects can take place due to the accidental degeneracy of energy levels
of hydrogen-like atoms. This problem was considered in the framework of the density
matrix formalism [11]. It was found that the interference between quantum states with
small n does not change the result based on a set of probabilistic kinetic equations (their
difference is less than per mille).

Eigenstates of the Coulomb Hamiltonian form a countable set of discrete levels. For
numerical calculations we will take into account only levels with principal quantum
number n 6 nmax. For a given principal quantum number n there are n2 states |nlm〉
with different orbital and magnetic quantum numbers. We will denote the total number
of discrete bound states taken for the calculation as N . To make the system complete we
introduce cross section σu

i which stands for the sum of transitions from state |i〉 to any
discrete state above nmax:

σu
i =

∑

f :nf >nmax

σf
i = σtot

i − σion
i −

∑

f :nf 6nmax

σf
i . (13)

It is straightforward to write the probability of the pionium atom to be produced in any
bound state above nmax:

pu(0) = 1 −
∑

i:ni6nmax

pi(0). (14)
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Finally we will write the system of kinetic equations in the matrix form

d

ds
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. (15)

Diagonal terms describe the total decrease of level population

W i
i = −

ρNA

A
σtot

i − W anh
i . (16)

System (15) is a system of linear ordinary differential equations with constant coefficients.
The rank of the matrix is N , with 3 low lines being a linear combination of first N lines.
It is exactly solvable

pi(s) =
∑

k

ckα
(k)
i eλks, (17)

where λ1, . . . , λN are eigenvalues and α(k) their corresponding eigenvectors. Symmetry of
the upper left N -by-N corner guaranties that all its eigenvalues are real [15]. Coefficients
ck are fixed from initial conditions:

pi(0) =
∑

k

ckα
(k)
i . (18)

The probability of ionization is expressed through the solution (17)

pion(s) =
∑

k

ck

λk

(

eλks − 1
)

∑

i

W ion
i α

(k)
i . (19)

Expressions for pu(s) and panh(s) have the same form as (19) if one substitutes W ion
i with

W u
i or W anh

i respectively.
DIRAC uses very thin targets (their nuclear efficiency is less than 10−3), therefore

atoms are produced nearly uniformly over the target thickness s0. Hence the probability
for a pionium to leave the target in the state |i〉 reads

Pi(s0) =
∑

k

ckα
(k)
i

1

λks0

(

eλks0 − 1
)

, (20)

while the probability of ionization on the exit of the target is

Pion(s0) =
∑

k

ck

λk

(

1

λks0

(

eλks0 − 1
)

− 1

)

∑

i

W ion
i α

(k)
i . (21)

Similar expressions can be derived for the probability of annihilation Panh and for the
probability Pu to reach any excited state with n > nmax.
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Table 1: Numerical solution with n > nmax states intact

nmax P A
dsc P A

anh P A
ion P A

u

1 0.0712 0.4320 0.1246 0.3722
2 0.0841 0.4395 0.1742 0.3022
3 0.0889 0.4404 0.2042 0.2664
4 0.0914 0.4406 0.2262 0.2418
5 0.0928 0.4407 0.2438 0.2227
6 0.0937 0.4407 0.2586 0.2070
7 0.0943 0.4407 0.2715 0.1935
8 0.0947 0.4407 0.2828 0.1817

In table 1 we illustrate this solution for a pionium atom produced in 95 µm thick
Ni target with momentum pA = 4.6 GeV/c, corresponding to the average laboratory
momentum of produced pioniums in the kinematic range of the DIRAC experiment.
Eigenvalues were numerically found by the appropriate function from LAPACK [16].
Numerical precision of the above solution can be estimated from the inequality

∣

∣1 − P A
dsc − P A

anh − P A
ion − P A

u

∣

∣ < 1 · 10−12, (22)

thus round-off errors do not affect the result.

System of equations (15) is constructed in a way that as soon as an atom reach the
state with n > nmax it effectively quits from calculations and is kept intact, though in
reality it is expected to undergo further electromagnetic interactions, e.g. it can be ionized
or de-excited to the low-lying states. Therefore P A

u is the probability for atoms to reach
states with n > nmax, which amounts to about 20%. This numerical value is in agreement
with the earlier calculations [10] (fig. 3(d)).

As an atom transits to the state nf > ni its effective radius of electromagnetic
interactions grows and its characteristic ionization length is getting shorter

λion
|n>nmax,lm〉 < λion

|nmax=8,lm〉 ≈ 2 µm. (23)

The target used in DIRAC is 95µm thick, therefore highly excited atoms have a chance
to leave the target in a bound state only if they were created in the rear part of the target
close to its boundary. Otherwise these highly excited atoms will be ionized. These allow
us to set the range for the ionization probability in the target:

0.2828 = P A
ion < Pion < P A

ion + P A
u = 0.4645. (24)

Here the upper bound corresponds to the case when all highly excited atoms are ionized,
while the lower bound P A

ion is at least probability of ionization from states with n 6 nmax.

From table 1 one can conclude that above upper and lower bounds converge slowly
with increase of nmax and in this way it would be difficult to increase nmax in order to
achieve precision required by DIRAC (per cent level).

5



2 Evolution of states with n > nmax

Rather than trying to solve the system (15) directly we will modify it in order to get
the lower bound of the ionization probability by taking into account dynamics of highly
excited states with n > nmax. We will modify the system (15) in the following form:
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. (25)

Here

W ion
u =

ρNA

A
σion

nmax+1,min, σion
nmax+1,min = min

l′m′

{

σion
|nmax+1,l′m′〉

}

(26)

is the lower bound of the probability of an ionization per unit length from any state
with n > nmax, because the ionization cross section tends to grow with increasing of the
principal quantum number n due to the corresponding expansion of the atomic radius. The
minimal and maximal values of the ionization cross-section for different principal quantum
numbers are drawn in fig. 1. To find the lower bound of the ionization probability, further
we require all probabilities of an ionization per unit length from any state |nlm〉 to be
smaller, than W ion

u :

W ion
|nlm〉,min =

ρNA

A
σion
|nlm〉,min, σion

|nlm〉,min = min
{

σion
|nlm〉, σion

nmax+1,min

}

. (27)

The diagonal term W i
i , which describes the level de-population, is changed accordingly

to fulfill (12).
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Figure 1: min
l′m′

{

σion
|nl′m′〉

}

and max
l′m′

{

σion
|nl′m′〉

}

for different principal quantum numbers n.
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Upper bound of the probability of the de-excitation per unit length from all states
with n > nmax to a state f with nf 6 nmax is obtained from the following inequality

∑

i:ni>nmax

W f
i pi <

∑

i:ni>nmax

W f
i ·

∑

i:ni>nmax

pi = W f
u pu = W u

f pu. (28)

Finally the diagonal term for the sum of discrete states with n > nmax is

W u
u = −

ρNA

A
σion

nmax+1,min − W anh
u −

∑

f :nf6nmax

W f
u , (29)

where W anh
u =

2mπ

pAτ1S(nmax + 1)3
is the upper bound of the probability of an annihilation

per unit length from all states with n > nmax. The rank of the new system is N+1. The
system is constructed in the way that ionization is underestimated and all competitive
processes including de-excitation from high n states (thus transitions to bound states with
even lower ionization) are overestimated, therefore the solution is the mathematical lower
bound of the probability of ionization. Numerical results are presented in Tab. 2.

Table 2: Numerical solution for the lower bound of Pion as a function of nmax

nmax P B
dsc P B

anh P B
ion P B

u

1 0.0856 0.5367 0.3241 0.05367
2 0.1273 0.4674 0.3881 0.01714
3 0.1247 0.4479 0.4225 0.00491
4 0.1169 0.4431 0.4383 0.00167
5 0.1109 0.4416 0.4468 0.00067
6 0.1068 0.4411 0.4517 0.00030
7 0.1041 0.4409 0.4548 0.00015
8 0.1023 0.4408 0.4567 0.00008

Upper and lower bounds effectively squeeze the solution (fig. 2), for nmax = 8 they are

0.4567 = P B
ion < Pion < P A

ion + P A
u = 0.4645,

Pmax
ion − Pmin

ion

2Pion
≈ 0.8 · 10−2, (30)

which is within the precision, required by DIRAC. Range can be further shrunk by
extrapolation as shown in fig. 2.

2.1 Very thin target

We have to emphasize that upper and lower bounds of the ionization probability squeeze
the solution with the required precision due to the fact, that for atoms with the principal
quantum number n > 8 the characteristic ionization length is less than 2 µm, which is
much shorter than the target thickness of 95µm. If one selects very thin target (e.g. 10µm
thick Ni) then the upper and lower bounds will show a worse convergence (fig. 3).
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Figure 2: Upper and lower bounds of Pion as a function of nmax, fitted by aeαnmax + c
functions to guide the eye.
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Figure 3: Upper and lower bounds of Pion as a function of nmax for 10µm thick Ni target.

2.2 Extrapolated value of Pion

Upper and lower bounds of Pion as a function of nmax do converge to the value of Pion if
nmax → ∞. Dependence of Pion bounds as a function of nmax can be approximated by
hyperbolas

fhyp(nmax) =











c0

nc1
max

+ c2, upper limit

−
c3

nc4
max

+ c2, lower limit
(31)

or exponential functions

fexp(nmax) =

{

c0e
−c1nmax + c2, upper limit

−c3e
−c4nmax + c2, lower limit,

(32)

which are simple shapes, which have required asymptotic behavior. Parameters c0, . . . , c4

were chosen to minimize the sum of squares of the residuals (points with n = [3, nmax]
were used). Fits by fhyp(nmax) suggests the asymptotic value of ≈ 0.464, while fexp(nmax)
gives ≈ 0.459 (fig. 4).
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Conclusions

We confirm that the contribution of highly-excited states (with n > nmax = 8) to the
probability of ionization is significant (> 1/3). We derived a mathematical approach to
calculate lower and upper bounds for the probability of ionization. These lower and upper
bounds effectively squeeze the solution to the value of the probability of ionization with
1% precision, which is within requirements of the DIRAC experiment. Thus the first
direct (based on ionization cross sections) calculation of the probability of ionization has
been performed.

Author thanks L. Afanasyev, L. Nemenov and V. Yazkov for many discussions on the
problem.

A Comparison to indirect calculations of Pion

Before the probability of ionization Pion was estimated indirectly [8, 10]

Pion = 1 − Pdsc − Panh. (33)

For nmax = 8 the probability of annihilation Panh ≈ Panh(n < nmax) and the probability
to leave the target in a bound state Pdsc = Pdsc(n < nmax) + Pdsc(n > nmax) with the
population of highly excited bound states approximated by

ftail(n) =
a

n3
+

b

n5
. (34)

Free parameters a and b were chosen in a way that ftail interpolates populations of bound
states with nmax − 2 and nmax − 1. Resulting indirect estimation of Pion as a function of
nmax is shown on fig. 4.
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0.18

0.182

0.184

ionP
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Figure 4: Asymptotic values of Pion as a function of nmax for 95 µm (left) and 10 µm
(right) thick Ni targets.
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B Comment on level populations

As small momentum transfers are preferred, transitions between close states prevail over
transitions between more distant levels:

σ
|nlm〉
|n′l′m′〉 > σ

|nlm〉
|n′′l′m′〉, if |n′ − n| < |n′′ − n|. (35)

Atoms are produced mainly in 1S- and 2S-states. The natural way to reach states with
n > nmax is to follow a sequence of transitions with ∆n = 1 while increasing the orbital
momentum of the pionium at the same time. This can be illustrated with fig. 5, where dis-
tribution of number of discrete-discrete transitions has its peak close to (nmax+1) − 1 = 8
and even numbers of transitions are dominated. Fig. 6 shows populations of |n = 7, l, m〉
states on the exit of the Ni 95 µm target (the quantization axis is along the pionium
momentum).
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Figure 5: Distribution of number of
discrete-discrete transitions before pio-
nium reaches states with n > nmax = 8.

Figure 6: Population of pionium bound
states with n = 7 on the exit of the
target according to Eq. (15).
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