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1 Preface

The aim of this work was to recalculate the polynomials which are used in ARIANE in
the cases when it needs to bind the particle coordinates before the magnet and after the
magnet. The recalculation is needed due to some changes of DIRAC-II setup acceptance.
In principle there is a common method for it -a propagation of particle through the field
using the existing magnetic map but this method consumes a lot of CPU time and it was
decided to use in ARIANE the polynomials which allow to find the coordinates, directions
and momentum of the particle via the polynomials which depend on particle coordinates
and space directions behind the magnet.

The following polynomials(tables) were obtained:

1. To calculate the px,py,pz momentum components of the particle which it has when
it is created in the target. This polynomial depends on x, y, tan(θx), and tan(θy)
at the level of vacuum membrane.

2. To calculate tan(θy) as function of x, y and tan(θx).

3. To calculate Ti(Ti = x, y, tan(θx), and tan(θy)) at the level z=-500cm(it’s about
fiber detector)) as function of momentum, x, y, tan(θx), and tan(θy) at the level of
vacuum membrane.

4. To calculate the covariant matrix RTiTj
as function of particle momentum.

5. The 5-dimensional table which determines the allowed 5-dimensional regions of mo-
mentum, x, y, tan(θx), and tan(θy) at the level of vacuum membrane.

2 Results

To obtain all of these polynomials we needed to simulate some(huge) number of particle
tracks. This was done by GEANT-DIRAC version where the DIRAC-II changes were
taken into account. There were simulated two samples of tracks: they start from target
and they start from the plane at z=-500cm with the momentum between 0.9 and 11
GeV/c. The tracks were accepted if they passed through the vacuum membrane, at least
four drift chambers, horizontal and vertical hodoscopes. For the first sample also it was
needed to pass through the fiber detector.



2.1 The px,py,pz and tan(θy) approximation.

To approximate the each of three projections of particle momentum the length of poly-
nomial was chosen to be of 101 ,the fitting was done separately for p < 5GeV/c and
p > 5GeV/c. For case of tan(θy) the polynomial length was 35. The results of fitting
are shown on Fig. 1-4. On Fig.1 the values of δpx, δpz, δpz and δ tan(θy)(the negative
particles) are shown, where the δ means the difference between the Monte-Carlo values
and values calculated by fitting polynomial. On Fig.2 the values of σ of these four param-
eters( δpx, δpz, δpz and δ tan(θy)) are shown in the dependence of particle momentum. On
Fig.3 ,4 the results for positive particle case are shown. The corresponding momentum
distributions are shown on Fig.9(top distributions).

2.2 The x, y, tan(θx), and tan(θy) at the level z=-500cm approx-

imation.

To approximate the each of these values the length of polynomial was chosen to be of 475,
the momentum interval was divided into 10 subintervals and the fitting was carried for
each of them separately. The results of fitting are shown on Fig. 5-8. On Fig.5 the values
of δx, δy, δ tan(θx), and δ tan(θy)(the negative particles) are shown. On Fig.6 the values of
σ of these four parameters( δx, δy, δ tan(θx), and δ tan(θy)) are shown in the dependence
of particle momentum. On Fig.7 ,8 the results for positive particle case are shown. The
corresponding momentum distributions are shown on Fig.9(bottom distributions).
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Figure 1: The distributions of δpx, δpz, δpz and δ tan(θy)(the negative particles), which are
the difference between the Monte-Carlo values and values calculated by fitting polynomial.
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Figure 2: The distributions of σ(δpx), σ(δpz), σ(δpz) and σ(δ tan(θy))(the negative parti-
cles) in the dependence of particle momentum.
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Figure 3: The distributions of δpx, δpz, δpz and δ tan(θy)(the positive particles), which are
the difference between the Monte-Carlo values and values calculated by fitting polynomial.
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Figure 4: The distributions of σ(δpx), σ(δpz), σ(δpz) and σ(δ tan(θy))(the positive parti-
cles) in the dependence of particle momentum.
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Figure 5: The distributions of δx, δy, δ tan(θx), and δ tan(θy)(the negative particles),
which are the difference between the Monte-Carlo values and values calculated by fitting
polynomial.
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Figure 6: The distributions of σ(δx), σ(δy), σ(δ tan(θx)) and σ(δ tan(θy))(the positive
particles) in the dependence of particle momentum.

9



Figure 7: The distributions of δx, δy, δ tan(θx), and δ tan(θy)(the positive particles),
which are the difference between the Monte-Carlo values and values calculated by fitting
polynomial.
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Figure 8: The distributions of σ(δx), σ(δy), σ(δ tan(θx)) and σ(δ tan(θy))(the positive
particles) in the dependence of particle momentum.
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Figure 9: The momentum distributions for the case of tracks from the target(the top
distributions, left one - negative particles, right one - positive particles) and for the case
of tracks starting at z=-500cm(the bottom distributions, left one - negative particles, right
one - positive particles).
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