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Abstract

The goal of this note is to describe the algorithms used in DIRAC to estimate

the lifetime τ and the difference in scattering lengths
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∣. This note could then

be used as a reference, saving lengthy explanations in the physics publications.

The results of the analysis consist of a set of N measurements of the breakup prob-
abilities pi, namely mi (i = 1, N) (see Tab. 1). The parent probability density function
(pdf) of each measurement mi is assumed to be a Normal law of mean pi and standard
deviation σi:

fi(mi|pi, σi) =
1

σi

√
2π

exp

(

−(mi − pi)
2

2σ2
i

)

. (1)

Measurements corresponding to common experimental conditions (i. e. common ex-
pected breakup probabilities) have been regrouped using the standard average of the
measurements. This is not a necessity, all measurements may be treated on the same
footing without affecting the results. Only the statistical uncertainties σi are used in this
calculation.

mi =

∑

j

mij/σ
2
ij

1/σ2
i

,
1

σ2
i

=
∑

j

1

σ2
ij

. (2)

Table 1: Break-up probabilities and corresponding estimations τ̂i for different data periods

period mi σstatm τ̂i, fs σstatτ , fs σstatτ , fs

Ni 94 µm, 24 GeV/c a 0.4587 0.0224 3.1459 0.4804 0.4162

Ni2001b 0.4335 0.0390 2.5497 0.6961 0.5581
Ni2002 24 0.4124 0.0315 2.2333 0.4866 0.4110
Ni 98 µm, 24 GeV/c 0.42073 0.02451 2.3539 0.3886 0.3399

Ni2002 20 0.4643 0.0318 3.1658 0.6880 0.5656
Ni2003 20 0.4158 0.0412 2.3419 0.6845 0.5477
Ni 98 µm, 20 GeV/c 0.44619 0.02517 2.8309 0.4759 0.4108
∗ Experimental values correspond to “v4” analysis [1]
∗∗ Hereafter we keep excessive number of digits to ease a cross-check between
independent calculations
a B(τ) is scaled by the factor 1/1.014 (target impurities correction)
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Figure 1: Functions Bi(τ) corresponding to the dependence of the break-up probability p
averaged over the momentum spectra of produced pioniums for different targets and beam
momenta

The relation between pi and the lifetime τ , pi = Bi(τ), depends on the target (material
and thickness) and on the beam particle (nature and momentum) (see Fig. 1). This
relation is by nature a one-to-one function (this is important for the following calculation).
Its derivative is positive, dB/dτ > 0, because evidently increasing the lifetime would
decrease the decay probability hence increase the breakup probability (which is the
competing evolution). Its calculation is described in [2].

In the following, we shall represent sets by bold characters:

m = [m1, m2, . . .], σ = [σ1, σ2, . . .], p = [p1, p2, . . .]. (3)

The likelihood of this set of measurements is the product of the individual functions fi,
an overall function of their common parameter τ . After replacing pi by the breakup
probability functions Bi(τ), and changing the name f to g, it reads:

gi(mi, σi, τ) = fi(mi|pi, σi), (4)

L(m, σ, τ) =
∏

i

gi(mi, σi, τ). (5)

The classical estimate is τ̂ , that value of τ that maximizes the likelihood. Equivalently,
with evidently an identical result, one may minimize the log-likelihood (i. e. least-squares
formulation):

ln L(m, σ, τ) =
∑

i

ln gi(mi, σi, τ). (6)

Please, notice that we started with the pdf fi which have a probabilistic meaning:
fi(mi|pi, σi) dmi is the probability that mi lies in a range dmi about pi. There is nothing
of that sort in the likelihood L(m, σ, τ), although the same functions are used. There is
no probabilistic statement about pi around mi.

Justification and properties of the Maximum Likelihood method may be found in [3].
The invariance property, important for our problem, is recalled here:
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Figure 2: Likelihoods: individuals gi(mi, σi, τ) and the combined L(m, σ, τ) (left). Most
probable value τ̂ with its statistical uncertainties for each period (right).

The maximization of L(x), with respect to x, and of L(x(y)), with respect to y,
will give correlated results x0 and y0, x0 = x(y0), a relation independent of the
likelihood function. Indeed, if x0 is such that it is solution of dL/dx|x=x0

= 0
then y0 such that x0 = x(y0) is solution of dL/dy|y=y0

= dL/dx|x=x0
·dx/dy = 0

because there dL/dx|x=x0
= 0.

This is called invariance of the maximum likelihood estimation (see Eq. 8.11 in [3]). All
this assumes x(y) to be a one-to-one function, which is our case (more general cases may
however be treated).

Fig. 2 shows a representation of the overall likelihood and the individual ones, re-
stricted each to one measurement (i. e. functions gi) versus the lifetime τ . For commodity
of the graphical representations, all functions are rescaled so that their maxima are set to a
common value, 1. This does not affect the τ -positions of the maxima because the scaling
factors are independent of τ . The individual likelihoods are now simply the exponent
terms of the functions gi.

In the case of a Normal law, the confidence level corresponding to the range (µ− nσ,
µ + nσ) is:

CL =

µ+nσ
∫

µ−nσ

1

σ
√

2π
exp

(

−(x − µ)2

2σ2

)

dx. (7)

The value of the likelihood L(x, µ, σ) at x = µ±nσ (away ”n sigmas” from its maximum)
is

L = Lmax exp
(

−n2/2
)

. (8)

For an arbitrary likelihood function Lx(x), one may always make a change of variable
on x, y = g(x), such that Ly(y) is a Normal law N(y|µy, σy). Thus the same calculation
as above holds, still based on the invariance property. In particular:

µy = g(µx), Lx(µx − xlow) = Ly(µy − nσy) and Lx(µx + xsup) = Ly(µy + nσy). (9)

The range (µy − nσy, µy + nσy) transforms back in an x range, (µx − xlow, µx + xsup),
BUT the latter is NOT any more symmetrical about µx. The τ -ranges corresponding to
different confidence levels are indicated in the figures and in Tab. 2.
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The estimation of the lifetime reads

τ̂ =
(

2.7738 +0.2497
−0.2302

∣

∣

stat

)

· 10−15 s. (10)

The systematical errors have not yet been considered. They are here common to
all measurements, thus should be considered as a correlated effect while, until now, the
measurements were considered independent from each other. The likelihood of the set
of measurements cannot any more be the product of individual likelihoods. One now
considers a multidimensional Normal distribution. Let σstati represent the statistical
uncertainty on mi and σsys the systematical error common to all measurements. Let
U be a column matrix (and UT its transposed, a line matrix) defined by Ui = mi − pi.

We use the standard notations:

E[x] expectation value of x, (11)

V [x] = E[(x − E[x])2] variance of x, (12)

cov[x, y] = E[(x − E[x]) · (y − E[y])] covariance of x and y. (13)

By construction E[Ui] = 0. Let G be the error matrix on U :

Gij = cov(Ui, Uj) = E[UiUj], (14)

and H be the inverse of G. Then one defines the scalar

M = UT HU (15)

and the likelihood

L = exp(−M/2) (16)

This expression is the same as defined earlier when G is diagonal, i. e. Gij = δij σstat
2
i . We

merge in quadrature statistical and systematical uncertainties, so that the variance V of
Ui is

Gii = V [Ui] = E
[

[Ui − E[Ui]]
2
]

= E
[

U2
i

]

= σstat
2
i + σ2

sys. (17)

Using the fact that the systematical error on Ui − Uj is 0, the off-diagonal terms, Gij =
E[UiUj], can be estimated from:

V [Ui − Uj] = σstat
2
i + σstat

2
j = V [Ui] + V [Uj] − 2 cov(Ui, Uj)

= σstat
2
i + σ2

sys + σstat
2
j + σ2

sys − 2E[UiUj] = σstat
2
i + σstat

2
j + 2σ2

sys − 2E[UiUj], (18)

hence

Gij = E[UiUj] = σ2
sys + δijσstat

2
i . (19)

G is thus the sum of the diagonal matrix corresponding to the statistical uncertainty and
a matrix whose all terms are equal to σ2

sys.
The estimation of the uncertainty (confidence level for n=1) is done in the following

way. The calculations are done using successively statistical and total uncertainty, the
latter being the combination in quadrature of statistics and systematics. This procedure
is repeated using negative and positive components of the uncertainties on measurements

4



, s1Sτ
2 2.5 3 3.5 4

-1510×0

0.2

0.4

0.6

0.8

1

totCombined likelihood function L

, CL=0.68σ1

CL=0.90

CL=0.95

Figure 3: Likelihood function Ltot(m, σ, τ), which corresponds to the combination of all
measurements including their statistical and systematic uncertainties. Statistical-only
Lstat(m, σ, τ) is shown by a dashed line

Table 2: Confidence intervals of the estimation τ̂

CL τ stat, fs τ stat, fs τ tot, fs τ tot, fs

erf (1/
√

2) 2.5437 3.0236 2.4707 3.0834
0.90 2.4045 3.1962 2.2926 3.3021
0.95 2.3391 3.2842 2.2097 3.4147

and keeping the corresponding lower and higher limits of the range of the confidence levels
respectively. There are thus 4 calculations:

σstatm ⇒ σstatτ , σstatm ⇒ σstatτ , (20)

σtotm ⇒ σtotτ , σtotm ⇒ σtotτ . (21)

In our calculations σstatm = σstatm, while σstatτ and σstatτ are different due to the non-
linearity of Bi(τ). The total errors are naturally σtotτ and σtotτ . The systematical errors
are

σsysτ
=

√

σtot
2
τ − σstat

2
τ , (22)

σsysτ
=

√

σtot
2
τ − σstat

2
τ . (23)

For numerical calculations we use σsysm
= 0.012 and σsysm

= 0.010 according to [4],
which gives

σsysm
= 0.012 ⇒ τ̂ = 2.7715 −0.3008|tot fs (24)

σsysm
= 0.010 ⇒ τ̂ = 2.7722 +0.3111

∣

∣

tot
fs (25)

These calculations give values of the solution τ which are slightly different between the
cases with and without systematical errors. The differences are of the order of 1% of the
uncertainties, thus negligible. These differences would be strictly 0 if the derivatives with
respect to τ of the breakup probability functions Bi(τ) were equal to each other at the
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position of the solution τ̂ . These derivatives are indeed very close to each other. In the
general case the inverse of the square of the standard deviation on τ can be estimated
from the formula

1

σ2
totτ

=

n
∑

i=1

(B′

i)
2

σ2
i

+ σ2
sys

n
∑

i=1

n
∑

j=i+1

(

B′

i − B′

j

)2

σ2
i σ

2
j

1 + σ2
sys

n
∑

i=1

1

σ2
i

. (26)

Finally the estimation of the pionium lifetime in the ground state reads

τ̂ =
(

2.77 +0.25
−0.23

∣

∣

stat

+0.19
−0.19

∣

∣

sys

)

· 10−15 s =
(

2.77 +0.31
−0.30

∣

∣

tot

)

· 10−15 s. (27)

The relation between lifetime and scattering lengths is:

τ =
1

Γtot

=
Br2π0

Γ2π0

=
const

|a0 − a2|2
, (28)

where (see [5])

const =
9

2α3m2
π+

1
√

m2
π+ − m2

π0 − 1
4
m2

π+α2

1

1 + δΓ

. (29)
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Figure 4: Likelihood function Ltot (m, σ, |a0
0 − a2

0|), which corresponds to the combination
of all measurements including their statistical and systematic uncertainties. Statistical-
only Lstat (m, σ, |a0

0 − a2
0|) is shown by a dashed line

Table 3: Confidence intervals of the estimation ̂|a0 − a2|
CL |a0 − a2|

stat
|a0 − a2|stat |a0 − a2|

tot
|a0 − a2|tot

erf (1/
√

2) 0.2595 0.2829 0.2570 0.2871
0.90 0.2524 0.2910 0.2483 0.2980
0.95 0.2490 0.2950 0.2442 0.3036

6



The invariance of the maximum likelihood method recalled above allows to obtain directly
the best value of |a0 − a2| when that of τ has been found. The results are shown in
Tab. 3 and in Fig. 4. The theoretical error induced by the uncertainty of the factor
δΓ = (5.8 ± 1.2) · 10−2 is negligible:

̂|a0 − a2|mπ+ =
(

0.2709 +0.0119
−0.0114

∣

∣

stat

+0.0015
−0.0015

∣

∣

theor

)

. (30)

Final result reads

̂|a0 − a2|mπ+ = 0.271 +0.012
−0.011

∣

∣

stat

+0.010
−0.008

∣

∣

sys
= 0.271 +0.016

−0.014

∣

∣

tot
. (31)

The results of the algorithm described above were tested by applying it to a sample
of simulated experiments. Starting from an assumed τtrue, one calculates the breakup
probabilities pi (i = 1, 3 as in the experiment) resulting from the target-beam conditions
of the experiment. For each simulated experiment, one generates pseudo-measurements
mi = pi + σstati + σsys, where σstati and σsys are Normal random numbers of mean 0 and
rms σstati and σsys, measurement uncertainties and systematic error respectively.

The parameters used are:

• Sample size: 10000 simulated experiments. 206 cases were rejected because the
LifeTime fitted was outside the range (1, 5) fs.

• τtrue = 2.8 fs

• σstati = (0.0224, 0.0252, 0.0245)

• σsys = 0.015.

The fitted lifetime τ̂ has an average difference with the generated value τtrue of 0.009 fs
while its uncertainty estimated by the fit is 0.31 fs and the equivalent rms observed from
simulation is 0.29 fs. The average difference between lifetimes fitted using only statistical
uncertainties or the complete error matrix is smaller than 0.00001 fs.

Lifetime Uncertainty

Generated Fit-average Fit-estimation Fit-rms

2.8 2.791 0.305 0.288

The confidence levels define how frequently a Lifetime-range would include the true
value. For each simulated experiment and for each choice of confidence level the cor-
responding Lifetime-range is defined and the number of cases which include the true
value are counted. The table 4 shows the good agreement between expectations and
observations.

In conclusion, the statistical study confirms the correctness of the method used.

7



Table 4: Confidence levels of the simulated experiments

Confidence levels in %

Calculated Simulated

68.3 67.9
86.6 86.8
90.0 90.7
95.0 96.2
95.5 96.7
98.8 99.2
99.0 99.3
99.7 99.8
99.9 99.9
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