DIRAC setup

Installation and upgrade of the DIRAC setup for lifetime measurement of $\pi^+\pi^-$ and $\pi^{\pm}K^{\mp}$ atoms

A.Kuptsov

DIRAC Collaboration 75 Physicists from 19 Institutes

DIRAC collaboration

CERN Geneva

Czech Technical University Prague

Institute of Physics ASCR *Prague*

Nuclear Physics Institute ASCR Czech Republic

INFN-Laboratori Nazionali di Frascati Frascati

Trieste University and INFN-Trieste *Trieste*

University of Messina *Messina*

KEK Tsukuba

Kyoto Sangyou University Kyoto

75 Physicists from 19 Institutes

Tokyo Metropolitan University *Tokyo*

IFIN-HH Bucharest

JINR Dubna

SINP of Moscow State University Moscow

IHEP Protvino

Santiago de Compostela University Santiago de Compostela

Basel University Basel

Bern University Bern

Zurich University Zurich

Relative momentum resolution = 0.5 MeV/c

DIRAC-I setup (1998)

Results 2001-2003, TT+TT- signal

Results 2001-2003

2008 **DIRAC** (SPSC 22/04/08)

major part 2001-03 data (13300 observed pi+pi- atoms)

$$\tau = \left(2.82 + 0.25 |_{stat} \pm 0.19 |_{syst}\right) \text{fs} = \left(\dots + 0.31 |_{tot}\right) \text{fs}$$
$$\Rightarrow |a_0 - a_2| = 0.268 \pm 4.4\% |_{stat} \pm 3.7\% |_{syst} = \dots \pm 5.5\% |_{tot}$$

With MSGC : number of events is 17000, statistical error in $|a_0-a_2|$ is 3%, and full error is <5%.

Theory predicts π + π - scattering lengths with accuracy ~ 1.5 % :

 $|a_0 - a_2|_{ChPT} = 0.265 \pm 0.004 \ [m_{\pi}^{-1}]$ $\tau = (2.9 \pm 0.1) \times 10^{-15} s$

DIRAC-II setup (2006)

pi-pi tracing through the magnet

K-pi tracing through the magnet

DIRAC-II setup (2006)

π+π- signal (2007)

Observation of $\pi^+\pi^-$ atoms with the Platinum target

$\pi^{-}K^{+}$ and $\pi^{+}K^{-}$ signal (2007)

In total: 173±54 π K-atomic pairs are observed with a significance of 3.2 σ . $\tau > 0.8 * 10^{-15} s$ at 90%*CL*

B. Adeva et al., "Evidence for πK -atoms with DIRAC", Physics Letters B 674 (2009) 11 Y. Allkofer, PhD Thesis, Universität Zürich, 2008.

DIRAC history

- 92: Letter of Intent was prepared
- 93: Letter of Intent was approved by SPSLC
- 94: Proposal was prepared in Dubna
- 95: Proposal was approved by JINR Advisory Committee
- 96: Proposal was approved by SPSLC and RB
- 96: Memorandum of understanding
- 96: L. Nemenov spokesman
- 96: Secondary particle channel at 5.7 deg. (instead of 3.5 deg.)
- 96: A. Kuptsov technical coordinator
- 97: Proton beam line and radiation shield were designed
- 98: Magnet installation and field measurement
- 98: Setup and radiation shield installation
- 98: First accelerator run
- 01-03: Main statistics on pi+pi- atoms was collected
- 04: Addendum to Proposal was prepared for pi K atoms detection
- 04: Addendum was approved by SPSLC
- 05: Detectors were designed and manufactured
- 06: New detectors were installed
- 07-08: Accelerator run, pi+pi-, piK

PS East Hall

DIRAC area, distances in metres

Radiation shield (1998)

L=43 m, W=13.6 m, H=4.4 m Steel: 0.8 m, concrete: 0.8 m Steel roof: L=12 m, H=0.4 m Concrete roof: 2.4 m Beam dump: 8.0x3.2x3.2 m3

Radiation shield (1998)

Cooling system (1998)

Magnet (1998)

MNP21/3 B = 1.65 TBL= 2.2 Tm Current 2500 A Power 1.43 MW Weight 120 ton Dim. 4.2x2.5x2.0 m Gap 1.5x0.5x1.1 m Screens 400x200x15 cm Coils 2x165 turns Coils 18x18 mm Water 23 kg/cm2 Water 540 I/min

Magnet and flat chamber (1998)

Magnet and flat chamber (1998)

Shield (1998)

Collimator (1998)

Collimator (2000)

Secondary particle channel (1998)

Collimator: L=1.2 m Entr. 136x136 mm Exit: 178x178 mm +-1 degree Tube diam. 600 mm Flat chamber: L=2.74 m Entr. 38x38 cm Exit: 215x38 cm Walls 25 mm Weight: 2 ton Channel: L=6 m

Secondary particle channel and shield

Proton beam line (1998)

Proton beam line 1 (1998)

Proton beam line 2 (1998)

Proton beam line 2 (2006)

Collimators (2006)

Permanent magnet

L=1.5 m Hole for protons: W=88 mm H=50 mm

Permanent magnet (not installed)

For SFD 150x40x50 mm (WxLxH) Soft iron yoke Weight 1 kg Poles Nd-Fe-B Pole size 70x40x5 mm (WxLxH) Gap 30 mm B=0.27 T BL=0.01 Tm Precision < 0.5% 3 GeV/c - 1 mrad SFD +-2.35 mm 550 mm from target Beam sect. 20x20 mm Clearance for p 30 mm Rectractable

Shield (2006)

Target station and support (1998)

50x61x46 cm3 (WxHxL)

H=184 cm

Targets (1998)

Single (1998) and multilayer (2002) targets

Pbr for single and multilayer targets

Probability of A2pi breakup in Ni targets consisting of layers with 1 mm gaps and total thickness of 100 mkm as a function of lifetime.

Beam position detector (1998)

Proton beam line 3 (1998)

Proton beam line 4 (1998)

Micro strip gas chambers (1998)

Proportional gas detector Gas Electron Amplifier (GEM) + Micro Strip Gas Chambers (MSGC) Active area 10.24x10.24 cm2 Single-hit resolution 54 mkm 4 planes

Scintillation fiber detector (1998, 2002)

X (Y) plane (1998): 105x105 mm Fibres KURARAY SCSF38 Fibre diameter 0.50 mm Fibres in column 5 Columns pitch 0.44 mm Number of channels 240 15 16-ch Hamamatsu H6568 Rise time 0.7 ns Light output 6-10 phe Spatial resolution 127 mkm Time resolution 0.65 ns U plane (2002): Fibres: SCSF78M Fibre diameter 0.57 mm Fibres in column 3 Number of channels 320 Number of PSPM 20

Scintillation fiber detector (1998)

Scintillation ionization detector (1998)

Upstream detectors MSGC, SFD, IH (1998)

Upstream detectors MSGC, SFD, IH (1998)

Micro drift chambers (2006)

18 planes: X, Y, U Area: 80x80 mm Gas mixture: Ar(0.33)+ iC4H10(0.66)+H2O(0.01) Anode pitch 2.5 mm 32 wires in a plane Sell size: 2.5x2 mm Drift time: 26 ns Time resolution: <1 ns Space. resol. <80 mkm 2 track resol. <200 mkm Readout time: <3 mks

Micro drift chambers (2006)

Base 325 mm Each of 9 modules consists of two planes (XX, YY, UU)U planes: 10 degrees Two planes in a module are displaced by half of pitch for two close track resolution

Micro drift chambers (proposal)

Scintillation fiber detector (2002, 2006)

Plane X (Y) (2006) Area 98.5×107 mm Thickn. (one plane) 3.1 mm 480 columns 8 fibres in a column Fibre diameter 0.5 mm Column pitch 0.205 mm 30 16 ch H6568 per plane Light output 11 p.e. Time resolution 0.46 ns Space resol. $\sigma \approx 60 \ \mu m$ New electronics ADC-TDC for 960 channels Plane U (2002)

Scintillation ionization detector (2001)

Scintillation ionization detector (2001)

4 planes 11x11 cm X-A, Y-A, X-B, Y-B Slabs 11x7x1 mm Scintillator BC-408 Light guides 2x7 mm Millipore film 30 mkm Al mylar Gap 70 mkm FEU-85, 16 units Contact with wide side of LG Light increase by 50%. Time resol. <1 ns At 90 % of doubles, singles <15%.

Scintillation ionization detector (2001)

Upstream detectors MDC, SFD, IH (2006)

Drift chambers (1998)

DC1: 2x80x40 cm X,Y,W,X,Y,W. 800 ch DC2: X,Y, 80x40 cm DC3: X,Y, 112x40 cm DC4: X,Y,X,Y, 128x40 cm Both arms: 1216 ch Anode pitch: 10 mm Cell: 10x10 mm Cathode: 20 mkm carbon-coated mylar Anode wires: 50 mkm copper-beryllium alloy Drift velocity: 50 mkm Amplitude: 1 mA Pulse width: 20 ns **Resolution 90 mkm**

Vertical hodoscope (1998)

Area: 130x40 cm 18 slabs: 40x7x2.2 cm BICRON BC420 Two Hamamatsu R1828-01 Least count: 62 ps Time resolution 174 ps (2) Time resolution 127 ps (1)

Vertical hodoscope (2006)

Area 144x40 cm 20 slabs 40x7x2.2 cm BICRON BC420 Two Hamamatsu R1828-01 Time resol. 153 ps (2) Time resol. 108 ps (1)

Horizontal hodoscope (1998)

Area: 130x40 cm 16 slabs 130x2.5x2.5 cm Philips XP2008 Time resolution 320 ps Coplanarity criterion

Horizontal hodoscope (2006)

Area 150x40 cm 16 slabs 150x2.5x2.5 cm Philips XP2008 Time resolution 330 ps (2) Time resolution 233 ps (1)

Support for DC, VH, HH (1998)

Support for DC, VH, HH (1998)

Downstream detectors DC, VH, HH (1998)

Downstream detectors DC, VH, HH (2006)

Aerogel Cherenkov detector (2006)

Aerogel (2006)

Three modules Novosibirsk n=1.015: for 4-5.5 GeV/c 33x42 cm, L=11-23 cm Japan n=1.008: for 5.5-8 GeV/c 16x42 cm, L=16-23 cm Pyramidal shape Wavelength shifter p-terphenyl on tetratex reflector foils 50% increase in light PMTs Photonis XP4570/B 5-inch. UV-glass Nphe: 6.9 and 3.9 for heavy and light modules Efficiency for K+: 85-95%

C4F10 Cherenkov detector (2006)

C4F10, perfluorocarbon Transparency up to 190 nm n=1.00135 Max. Cherenkov angle 3.03 deg For pion detection 4-8 GeV/c Threshold for pions 2.7 GeV/c Window 42x44 cm Radiator thickness 85 cm Volume 0.4 m3 per detector 4 spherical mirrors 293x286 mm R=1194 mm 4 flat mirrors 185x185 mm 4 PMs: HAMAMATSU 6528 5 inch with UV-glass Nphe=30 for electrons Quality factor N0 = 125 cm-1 Efficiency for pions with p >4 Gev/c >99.5%

C4F10, spherical, flat mirrors, PMs

C4F10, spherical mirrors and support

C4F10, support for spherical mirrors

C4F10, flat mirrors and support

C4F10, PM and housing

C4F10, Cherenkov light

C4F10, Cherenkov rings

C4f10, Cherenkov ring

C4F10, laser test

Black: measurement

C4F10, single and double photoelectrons

C4F10, electrons

Nitrogen Cherenkov detectors (1998)

Nitrogen n=1.00029 theta=1.39 deg Windows 143x56 cm, 336x96 cm L=310 cm Radiator length 285 cm 20 spherical mirrors 30x35 cm, 6 mm thick R=1194 mm 10 PMs Hamamatsu R1587 130 mm UV-glass Nphe=16 Efficiency >99.8 % Pions <1.5 %.

Mirrors of Nitrogen Cherenkov detector

Nitrogen Cherenkov detectors (2006)

All Cherenkov detectors (2006)

Bridge-support for C4F10 detectors

Preshower detector (1998)

Area 280x75 cm 8 counters Slabs: 35x75x1 cm BICRON BC-408 PMs EMI 9954-B Pb 25 mm, 10 mm Eff. for pions 99.5% Loss. of pions <5%.

Preshower detector (2006)

Area: 350x75 cm First layer: Area 1: 175x75 cm 5 counters 35x75x1 cm Area 2: 175x75 cm 10 counters 17.5x75x1 cm Second layer: Area: 87.5x75 cm 5 counters 17.5x75x1 cm

Absorber (1998)

3.6x1.2x1.4(0.6) m3 (WxHxL), 30.8 ton

Absorber (2006)

3.6x1.2x1.4(0.6) m3 (WxHxL) with additions, 33.3 ton

Muon scintillation detector (1998)

340x75 cm Slab 12x75 cm Scint. 5 mm 2 layers 28x2 counters PMs FEU-85 Resol. 1.3 ns Muons: 10%

Muon scintillation detector (2007)

410x75 cm New counters: Int. 8 in two layers Ext. 4 in two layers New slabs: 12x88 cm 10 mm thick

Support for CH, PSH, AB, MU (1998)

Downstream detectors CH, PSH, MU (1998)

Downstream detectors (2006)

