Investigation of the magnetic field of the permanent magnet applied in the DIRAC experiment

P. Batyuk^{*a*}, O. Gortchakov^{*a*}, V. Yazkov^{*b*}

June 1, 2012

Abstract

An analysis of the experimental data obtained during the run of 2011 has revealed the effect of degradation of the permanent magnet used. This effect is investigated, and average magnetic field is estimated for each day of the run.

Introduction

The main purpose of the 2011 run is a search of pion atoms in a metastable state. To achieve this goal, it is very important to analyse the transverse momenta Q_y of $\pi^+\pi^-$ pairs.

Fig. 1 shows that the peak in the distribution of experimental events over Q_y is shifted with respect to the same peak for simulated events. This shift may be explained by degradation of the permanent magnet situated downstream of the Be target. The following situation occurred several times during the run: elements of the experimental setup, including, also, the magnet, were hit by the incident beam. With time, the energy of atomic nuclei released in transitions from excited to lower states could lead to an increase in the temperature of certain magnet domains up to values exceeding the Curie temperature, which on the whole would result in a decrease of the magnetic field of the permanent magnet. And even at normal beam condition magnet is hit by secondary high energy particles which also could provide demagnetization of the permanent magnet.

This paper presents a quantitative description of the magnet degradation. An attempt to determine the average magnetic field corresponding to each day of the run has been made.

To resolve the problem, analysis of the transverse momentum Q_y of e^+e^- pairs from conversion of the γ -quanta was carried out. The choice of e^+e^- pairs for the analysis is explained by the fact that in this case quantitative description of the magnet degradation can be performed with higher accuracy (due to the narrower peak we are interested in, as one can see from Fig. 2, comparing it with Fig. 1).

As it can be seen from Figs. 3 and 4, the leftward shift of the peak of interest is also evident in the case of e^+e^- pairs from γ conversion.

^aJoint Institute for Nuclear Research, Russia

^bSkobeltsin Institute of Nuclear Physics, Lomonosov Moscow State University, Russia

Figure 1: Simulated (upper) and experimental (lower) distributions of $\pi^+\pi^-$ pairs over Q_y . Statistics have been collected during the period from June 25 up to July 1.

Figure 2: Example of experimental distribution over Q_y for e^+e^- pairs from γ conversion.

Figure 3: Experimental distribution of e^+e^- pairs from γ conversion over Q_y for several days of the 2011 run.

Figure 4: Position of shifted peak in the distribution over Q_y as function of day of the run (data are presented for the first half of the run).

It should be taken into account, that the e^+e^- pairs could be the following:

- 1. pairs, produced as a result of the conversion of γ -quanta in the Be target;
- 2. pairs, resulting from internal conversion in the Be target $\pi^0 \to \gamma e^+ e^-$ (i.e. Dalitz pairs);
- 3. pairs, produced in the conversion of γ -quanta in platinum foil, mylar, air, the fiber and other detectors.

 e^+e^- pairs from conversion (including internal conversion) in the target form the shifted peak, all other pairs contribute to the peak near zero. This is due to the target being situated before the permanent magnet, the magnetic field of which deflects electrons and positrons from e^+e^- pairs produced in the Be target.

Algorithm and procedure for estimation of the magnetic field

First, the interval of magnetic field values $(0.0 \dots 1.0)^1$ was divided into 40 intervals with bins of 0.025.

The first step consisted in applying the GEANT-DIRAC program [1] for simulation of events of γ conversion into e^+e^- pairs (Dalitz pairs were also taken into account) within and after the Be target for each value of the magnetic field. It is also very important, that the simulated events contain information on the z-coordinate of the conversion point permitting determination of whether the conversion took place before or after the permanent magnet.

The simulated data were further transferred to the reconstruction program ARIANE, the output of which was recorded in Ntuple's of the form standard for the DIRAC experiment. The Ntuple's were subsequently transformed into ROOT-trees.

At the **second step**, the experimental events for each day (18.06.2011 - 15.11.2011) were fitted by the sum of two simulated distributions (for conversion within and after the Be target, respectively) for each value of the magnetic field (0.0, 0.025, 0.050 ... 0.950, 0.975, 1.0), upon which distributions were constructed demonstrating the dependence of the χ^2 values upon the magnetic field; such dependences are shown in Fig. 5 for several days of the run. From fits obtained for each day, only the one, providing the minimum χ^2_{min} value, was finally chosen, so as to extract the value H_{min} corresponding to this fit.

Further, distributions for each day, similar to the distributions in Fig. 5, were fitted by second order polynomials (red line in Fig. 5) within the interval $(H_{min} - \delta, H_{min} + \delta)$, where $\delta = 0.075$. The value H_{min}^{fit} determined by the minimum of a parabolic fit was considered the averaged value of the magnetic field for each day of the run.

At the **third step** errors were estimated for the reconstructed value H_{min}^{fit} of the magnetic field. This was done in the following way. We took the χ^2 value, differing from the minimum value χ^2_{min} by unity (i.e. $\chi^2 = \chi^2_{min} + 1$), and, using the parameters of the parabolic fit that yielded H_{min}^{fit} , we obtained two values H_{left}^{fit} and H_{right}^{fit} ($H_{left}^{fit} < H_{min}^{fit} < H_{right}^{fit}$) by resolving the corresponding quadratic equation.

 $^{^{1}}$ The value 1.0 corresponds to the initial magnetic field of the magnet, and 0.0 corresponds to the case when no magnetic field is present.

Figure 5: Dependence of values χ^2 values upon the magnetic field for separate days of the run.

As an estimate for the uncertainty in the daily magnetic field we adopted the value

$$\Delta H_{min}^{fit} = \frac{H_{right}^{fit} - H_{left}^{fit}}{2}$$

The results obtained are presented in Fig. 6 and Tab. 1.

Conclusion

The sharp decrease in the magnetic field corresponding to June 22 - June 23 and November 8 - November 9 (see Fig. 6), could be explained by a strong irradiation of the construction elements of the experimental setup, including the magnet (see above). The slight bump near August 1 (see also Fig. 4) is related to a change in the position of the magnet realized in order to focus the secondary beam in the center of the magnetic field. The drop at the end of the run may be explained by certain problems that occurred at the time with the accelerator.

Table 1: Number of events, value of magnetic field and error in magnetic field for each day of the run of 2011.

Date	N_{events}	$\mathrm{H_{min}^{fit}\pm\Delta H_{min}^{fit}}$	Date	N_{events}	$\mathrm{H_{min}^{fit}\pm\Delta H_{min}^{fit}}$
June 18	43769	0.895 ± 0.004	September 3	40680	0.437 ± 0.005
June 19	41281	0.853 ± 0.004	September 4	54222	0.429 ± 0.004
June 20	33301	0.821 ± 0.004	September 5	48757	0.439 ± 0.004
June 21	47109	0.793 ± 0.004	September 6	56682	0.428 ± 0.004

Date	N_{events}	$\mathrm{H_{min}^{fit}\pm\Delta H_{min}^{fit}}$	Date	N_{events}	$\mathrm{H_{min}^{fit}\pm\Delta H_{min}^{fit}}$
June 22	32633	0.784 ± 0.004	September 7	49614	0.428 ± 0.004
June 23	35706	0.747 ± 0.004	September 8	61810	0.425 ± 0.004
June 24	34807	0.699 ± 0.004	September 9	47201	0.419 ± 0.005
June 25	36293	0.685 ± 0.004	September 10	54305	0.421 ± 0.004
June 26	30610	0.685 ± 0.004	September 11	14166	0.42 ± 0.01
June 27	15841	0.68 ± 0.01	September 12	33061	0.420 ± 0.005
June 28	27416	0.665 ± 0.005	September 13	30619	0.413 ± 0.005
June 29	32508	0.661 ± 0.005	September 14	58493	0.419 ± 0.004
June 30	34446	0.646 ± 0.004	September 15	45344	0.410 ± 0.005
July 1	19946	0.64 ± 0.01	September 16	48383	0.406 ± 0.004
July 2	21305	0.63 ± 0.01	September 17	55107	0.416 ± 0.004
July 3	19217	0.63 ± 0.01	September 18	48473	0.402 ± 0.004
July 4	13739	0.61 ± 0.01	September 19	44334	0.404 ± 0.004
July 7	7668	0.61 ± 0.01	September 20	53151	0.403 ± 0.004
July 8	15806	0.60 ± 0.01	September 21	57893	0.401 ± 0.004
July 9	18784	0.591 ± 0.005	September 22	24150	0.405 ± 0.005
July 10	7091	0.59 ± 0.01	September 23	43982	0.399 ± 0.004
July 11	2428	0.58 ± 0.01	September 24	38801	0.400 ± 0.005
July 12	15451	0.57 ± 0.01	September 25	61149	0.390 ± 0.004
July 13	24005	0.574 ± 0.005	September 26	49011	0.396 ± 0.004
July 14	31916	0.573 ± 0.004	September 27	56301	0.391 ± 0.004
July 15	18498	0.573 ± 0.005	September 28	32316	0.391 ± 0.005
July 16	27184	0.566 ± 0.005	September 29	43304	0.392 ± 0.005
July 17	43128	0.563 ± 0.004	September 30	55305	0.393 ± 0.004
July 18	46709	0.557 ± 0.004	October 1	63972	0.388 ± 0.004
July 19	43631	0.557 ± 0.004	October 2	53564	0.389 ± 0.004
July 20	38956	0.546 ± 0.004	October 3	59152	0.385 ± 0.004
July 21	44630	0.536 ± 0.004	October 4	58661	0.384 ± 0.004
July 22	37116	0.531 ± 0.004	October 5	62475	0.385 ± 0.004
July 23	47070	0.523 ± 0.004	October 6	52749	0.384 ± 0.004
July 24	46068	0.524 ± 0.004	October 7	44098	0.385 ± 0.004
July 25	38797	0.520 ± 0.004	October 8	65514	0.377 ± 0.004
July 26	39968	0.519 ± 0.004	October 9	63661	0.384 ± 0.004
July 27	19393	0.52 ± 0.01	October 10	59388	0.382 ± 0.004
July 28	49750	0.505 ± 0.004	October 11	38270	0.373 ± 0.005
July 29	42739	0.503 ± 0.004	October 12	35008	0.377 ± 0.005
July 30	35993	0.503 ± 0.005	October 13	59095	0.376 ± 0.004
July 31	45581	0.506 ± 0.004	October 14	29622	0.379 ± 0.005
August 1	51263	0.517 ± 0.004	October 15	62042	0.369 ± 0.004

Table 1: Number of events, value of magnetic field and error in magnetic field for each day of the run of 2011.

Date	N _{events}	$\mathrm{H_{min}^{fit}\pm\Delta H_{min}^{fit}}$	Date	N _{events}	$\mathrm{H_{min}^{fit}\pm\Delta H_{min}^{fit}}$
August 2	59517	0.524 ± 0.004	October 16	59815	0.368 ± 0.004
August 3	52725	0.516 ± 0.004	October 17	54442	0.372 ± 0.004
August 4	19327	0.52 ± 0.01	October 18	51499	0.371 ± 0.004
August 5	45917	0.515 ± 0.004	October 19	59203	0.367 ± 0.004
August 6	48639	0.514 ± 0.004	October 20	54824	0.368 ± 0.004
August 7	31205	0.508 ± 0.005	October 21	50171	0.367 ± 0.004
August 8	42419	0.513 ± 0.004	October 22	59366	0.364 ± 0.004
August 9	35291	0.504 ± 0.004	October 23	58346	0.363 ± 0.004
August 10	32966	0.505 ± 0.005	October 24	48948	0.36 ± 0.01
August 11	52049	0.498 ± 0.004	October 25	48082	0.37 ± 0.01
August 12	53174	0.500 ± 0.004	October 26	12604	0.35 ± 0.01
August 13	56859	0.492 ± 0.004	October 27	37250	0.36 ± 0.01
August 14	37390	0.489 ± 0.004	October 28	40099	0.35 ± 0.01
August 15	50021	0.490 ± 0.004	October 29	15547	0.35 ± 0.01
August 16	35974	0.485 ± 0.004	October 30	30437	0.36 ± 0.01
August 17	31736	0.481 ± 0.005	October 31	24872	0.36 ± 0.01
August 18	29049	0.485 ± 0.005	November 1	35027	0.35 ± 0.01
August 19	42461	0.481 ± 0.004	November 2	32495	0.35 ± 0.01
August 20	63908	0.472 ± 0.004	November 3	38996	0.36 ± 0.01
August 21	64515	0.475 ± 0.004	November 4	40277	0.35 ± 0.01
August 22	65075	0.471 ± 0.004	November 5	32953	0.36 ± 0.01
August 23	65130	0.467 ± 0.004	November 6	33683	0.35 ± 0.01
August 24	51988	0.459 ± 0.004	November 7	17492	0.35 ± 0.01
August 25	53698	0.464 ± 0.004	November 9	18353	0.34 ± 0.01
August 26	52902	0.456 ± 0.004	November 10	33248	0.30 ± 0.01
August 27	66916	0.445 ± 0.004	November 11	33248	0.30 ± 0.01
August 28	62714	0.448 ± 0.004	November 14	7337	0.13 ± 0.01
August 29	61568	0.441 ± 0.004	November 15	12759	0.11 ± 0.01
$N_{total} = 5896101$					

Table 1: Number of events, value of magnetic field and error in magnetic field for each day of the run of 2011.

Fig. 7 presents the number of experimental events for each day of the run; Fig. 8 and Table 2 show the number and fraction of events corresponding to the magnetic field H_{min} .

References

[1] DIRAC-NOTE-2012-01: The generator of photons in the reaction $p + Ni \rightarrow \gamma + X$ at 24 GeV/c, O. Gortchakov [JINR].

Figure 6: Average value of magnetic field for each day of the run.

Figure 7: Number of experimental events for each day of the run.

Figure 8: Number of events corresponding to magnetic field H_{min} .

Table 2: Number and fraction of	f experimental ever	nts corresponding t	o discrete	value H_{min}
	1	1 0		

H_{min}	N_{events}	$\eta,\%$	H_{min}	N_{events}	$\eta,\%$
0.025	0	0	0.525	683674	11.60
0.050	0	0	0.550	291605	4.95
0.075	0	0	0.575	44931	0.76
0.100	0	0	0.600	63088	1.07
0.125	12759	0.22	0.625	40522	0.69
0.150	0	0	0.650	114316	1.94
0.175	7337	0.12	0.675	52134	0.88
0.200	0	0	0.700	65417	1.11
0.225	0	0	0.725	0	0
0.250	0	0	0.750	35706	0.61
0.275	0	0	0.775	32633	0.55
0.300	66496	1.13	0.800	47109	0.80
0.325	0	0	0.825	33301	0.56
0.350	507115	8.60	0.850	41281	0.70
0.375	707595	12.00	0.875	0	0
0.400	1304350	22.12	0.900	43769	0.74
0.425	476333	8.08	0.925	0	0
0.450	385525	6.54	0.950	0	0
0.475	701039	11.89	0.975	0	0
0.500	138070	2.34	1.000	0	0