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The aim of this work is to present the multiple scatting analysis on the 2009 data and
simulation.

1 Introduction

The knowledge about multiple scattering is extremely important in DIRAC due to the
nature of the events we are studying. The tracks of the atomic and Coulomb pairs are
characterised by a very small opening angle, and the signal is extracted by comparing data
and simulated events, thus a very detailed knowledge of the muliple scattering in data and
simulation is needed.

As a first approximation we can consider the two tracks of a prompt ππ pair as orig-
inating from a single space point inside the target. The tracks are firstly reconstructed
using only the Downstream part of the detector and extrapolated to the target plane, in
a second step the tracks are reconstructed in the upstream part of the detector, and a
matching of the parameters upstream-downstream is performed.

Call x2(x1) the π+(π−) final track extrapolation to the target plane in the X and Y
coordinates. The experimental error in the measurement of the tracks determines the
width of the ∆x = x2 − x1 and ∆y = y2 − y1 which we call vertex resolution. ∆x and ∆y
mainly depend on

• the SFD space resolution (momentum independent)

• the detailed material description for the upstream detectors and target (multiple
scattering MS α1

p

• the distance between target and upstream detecor ( very detailed knowledge with
sufficient precision)

2 Event selection

The events selected for this analysis are ππ data and MC simulated data, the cuts applied
on them are listed below:

• |∆(t)V H | < 0.3ns

• 1 track per arm (DC)

• 4MeV < |Qx| < 8MeV

• 3MeV < |Qy| < 6MeV

• |Ql| < 22MeV
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• No electrons, cut applied on the Ni Cherenkov amplitudes are AmplN1 < 62 AmplN2 <
75, this cut need to be studied further.

• No muons, cut applied AND(Muonflag, 3) 6= 0, this means that there is no hit
in muon detector which corresponds to the reconstructed trak. If this cut is not
applied, ∆x and ∆y on average have an increase of of 0.510−2cm for both data and
MC.

• Events where the two tracks share the same SFD(x) or SFD(y) hits are eliminated.

• For the MonteCarlo events, the simulation of the background has been added, this
has anyway a negligible influence on the ∆X and ∆Y . Events have been weighted
in order to reproduce the momentum (p1 + p2) distribution shape in experimental
data.

• For the Experimental data, accidentals events in the prompt window have been
subtracted.

3 First method for the comparison between data and MC

of the vertex resolution ∆x and ∆y

Our first approch is to measure ∆x and ∆y for different momentum bins (see Table 1 for
the experimental data and Table 2 for the simulated data ) and compare the results with
the simulation, in order to do so we fit the vertex resultion histograms with a gaussian
and we extract the parameter σ∆x(y). As we expect the resolution improves for increasing
momentum p = P+ + P

−
.

Table 1: Momentum bins for Experimental data.
Range Name Momentum Range p Fraction of statistics Number of events

(GeV/c) %

R1 2.6-4.2 53.4 67834

R2 4.2-5.6 30.5 38729

R3 5.6-8 16.1 20457

Table 2: Momentum bins for MC data.
Range Name Momentum Range p Fraction of statistics Number of events

(GeV/c) %

R1 2.6-4.2 53.1 434446

R2 4.2-5.6 30.7 251726

R3 5.6-8 16.2 132314

A detailed study of the Multiple scattering was already been performed on the 2001-
2003 data, and the results are reported in a Dirac Note [DIRAC Note 2007-04]. Since
then, two of the upstream detectors have been replaced by new ones with different fiber
diameter and different number of layers. We refer to them as SFDX and SFDY. These
two detectors are thus under investigation in this work.

To perform this study we have generated three samples of simulated data with different
conditions of the Multiple Scattering angle for SFDX and SFDY

• MS 1.0) Unchanged condition in the simulation of the SFDX and SFDY detector,
the materials are kept as the 2001-2003 ones, and the multiple scattering angle is
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described by the measured quantities reported in the Dirac note [DIRAC Note 2007-
04].

• MS 0.95) Changed condition in the simulation of the SFDX and SFDY detector, the
materials are kept as the 2001-2003 ones but the multiple scattering angle is reduced
of 5%.

• MS 0.90) Changed condition in the simulation of the SFDX and SFDY detector, the
materials are kept as the 2001-2003 ones but the multiple scattering angle is reduced
of 10%.

At the first stage of global tracking, ARIANE finds the tracks in DC. After it is needed
to merge DC tracks with hits in upstream detectors. The first of them is the SFD, which is
upstream coordinate detector, closest to DC. Planes of fiber detector are located along the
setup axis in the direction from the target to the magnet in the next order: Y, X, W. W-
plane is not used in the current version of the tracking to exclude correlation between X-
and Y- projection. ARIANE extrapolates track to the X-plane of fiber detector (SFDX) in
some assumption about momentum of a particle. Varying the momentum value (and the
angle of rotation in the field of spectrometer magnet), ARIANE looks for the coincidence of
the propagated coordinate with the coordinate of the hit in SFDX. It fixes the momentum
value, the coordinate and the angle in XZ-plane for downstream track. It is needed to
pointed out, that these track parameters are obtained for pieces of track between SFDX
and DC and does not take into account multiple scattering in SFDX itself.

After the program propagates track to SFDY plane, finds the hit in vicinity to the
propagated coordinate, and (if proper hit exists) updates track parameters (Y-coordinate
and angle in YZ-plane), using Kalman filter algorithm. Also the updated parameters do
not take into account the multiple scattering in SFDY itself. At the last step ARIANE
propagates the tracks to the target level. The accuracy of the propagation is defined by
the coordinate accuracy of SFD and DC detectors, and by the multiple scattering.

Multiple scattering in SFDX, SFDY and MDC has slightly higher weight in the re-
construction of scattering the X-coordinate at the target comparing with other upstream
detectors. Because SFDW and IH detectors are located between SFDX, SFDY plane from
one side and DC from another side. As result, variation of track parameters partly is
taken into account. The same is valid for SFDY and MDC for the reconstruction of the
Y-coordinate.
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3.1 ∆x

In the Tables 3 below the values of the RMS of the ∆x distribution are summarised, and
in Table 4 is shown σ∆x from the gaussian fit of the Vertex resolution histogram for the
different momentum bins for the X projection.

The values for the σ∆x are slightly smaller compared to the RMSs, this is due to the
tails of the distributions that are not completely described by a Gaussian fit. Especially it
is essential for total momentum range, where even central part are different from normal
distribution (because it is a sum of few Gaussian distributions with different widths). As
an estimation of the overall Multiple Scattering effect we concentrate on the main part of
the distribution, thus we restrict our study on the σ∆x.

In order to give an unique number that can estimate how well we reproduce the MS
in the Simulation, we introduce a weighted average of the σ∆x of the measurements: Ŝ∆x

and the error associated to it

Ŝ∆x =

√√√√
3∑

i=1

σ2
∆x(i) · w(i)

̂Er(S∆x) =

√∑
(2 · σ∆x(i) · w(i) · Erσ∆x(i))2

2 · Ŝ∆x

where w(i) are the weights defined as the proportion of events in the three momentum
bins, w(1) = N1/N, w(2) = N2/N, w(3) = N3/N and N1 + N2 + N3 = N where N is the
total number of events, (see Tables 1 and 2).
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Table 3: RMS of the Vertex resolution histogram of ∆x for the three momentum bins.
Data MS 1.0 MS 0.95 MS 0.90

10−2 cm 10−2 cm 10−2 cm 10−2 cm

R1 (59.98 ± 0.16) (60.41 ± 0.06) (59.55 ± 0.06) (58.80 ± 0.06)

R2 (43.0 ± 0.16) (44.98 ± 0.06) (44.26 ± 0.06) (43.42 ± 0.06)

R3 (33.39 ± 0.17) (34.86 ± 0.07) (34.10 ± 0.07) (33.52 ± 0.07)

Table 4: σ∆x from the gaussian fit of the Vertex resolution histogram.
Data MS 1.0 MS 0.95 MS 0.90

10−2 cm 10−2 cm 10−2 cm 10−2 cm

R1 (59.78 ± 0.15) (60.74 ± 0.07) (59.84 ± 0.06) (59.04 ± 0.06)

R2 (42.67 ± 0.15) (44.67 ± 0.06) (43.65 ± 0.06) (42.82 ± 0.06)

R3 (32.02 ± 0.16) (34.15 ± 0.07) (33.16 ± 0.08) (32.63 ± 0.07)

Ŝ∆x (51.35 ± 0.10) (52.54 ± 0.05) (51.63 ± 0.05) (50.86 ± 0.05)

The last line of the Table [4] shows the value of the variable Ŝ∆x that gives us an
average of the Vertex resolution in the X plane in data and Monte Carlo simulation. The
best agreement is obtained with the reduction of the scattering angle of 10%.
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3.2 ∆y
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Table 5: RMS of the Vertex resolution histograms of ∆y for the three momentum bins.
Data MS 1.0 MS 0.95 MS 0.90

10−2 cm 10−2 cm 10−2 cm 10−2 cm

R1 (60.37 ± 0.18) (60.10 ± 0.06) (59.48 ± 0.06) (58.56 ± 0.06)

R2 (45.73 ± 0.20) (46.28 ± 0.06) (45.64 ± 0.06) (45.00 ± 0.06)

R3 (35.23 ± 0.33) (37.23 ± 0.08) (36.75 ± 0.08) (36.29 ± 0.08)

The last line of Table 6 shows the value of the variable Ŝ∆y that gives us an average
of the Vetex resolution in the Y plane in data and Monte Carlo simulation. The best
agreement is obtained with the standard parameters of the scattering angle. Even in the
best case, MS 1.0, the parameters in the MC are still smaller than in the exprerimental
data, for this reason we are going to make a test with an increase of the scatterin angle of
5%.
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Table 6: σ∆y from the gaussian fit of the Vertex resolution histogram.

Data MS 1.0 MS 0.95 MS 0.90

10−2 cm 10−2 cm 10−2 cm 10−2 cm

R1 (60.62 ± 0.18) (60.07 ± 0.07) (59.37 ± 0.07) (58.31 ± 0.07)

R2 (44.85 ± 0.21) (44.03 ± 0.06) (42.77 ± 0.07) (42.13 ± 0.06)

R3 (31.82 ± 0.40) (33.66 ± 0.08) (32.70 ± 0.08) (32.22 ± 0.08)

Ŝ∆y (52.42 ± 0.13) (51.91 ± 0.05) (51.06 ± 0.05) (50.19 ± 0.05)

3.3 X and Y with different MS

Different trials have been done in order to find a best value for the Multiple Scattering,
here are reported the two set of data that have been generated with a different multiple
scattering angle for the X plane and Y plane.

Table 7: σ∆x from the gaussian fit of the Vertex resolution histogram with different mul-
tiple scattering in X and Y plane.

Data MS 0.90 x 1.05 y MS 0.90 x 1.0 y

10−2 cm 10−2 cm 10−2 cm

R1 (59.78 ± 0.15) (60.28 ± 0.06) (59.85 ± 0.07)

R2 (42.67 ± 0.15) (44.11 ± 0.06) (43.54 ± 0.06)

R3 (32.02 ± 0.16) (33.58 ± 0.08) (33.26 ± 0.08)

Ŝ∆x (50.90 ± 0.17) (52.05 ± 0.05) (51.61 ± 0.05)

Table 8: σ∆y from the gaussian fit of the Vertex resolution histogram with different mul-
tiple scattering in X and Y plane..

Data MS 0.90 x 1.05 y MS 0.90 x 1.0 y

10−2 cm 10−2 cm 10−2 cm

R1 (60.62 ± 0.18) (59.67 ± 0.07) (59.42 ± 0.07)

R2 (44.85 ± 0.21) (43.26 ± 0.07) (43.28 ± 0.07)

R3 (31.82 ± 0.40) (33.02 ± 0.08) (32.74 ± 0.08)

Ŝ∆y (52.42 ± 0.13) (51.40 ± 0.05) (51.22 ± 0.04)

7



4 Second method for the comparison between data and MC

of the vertex resultion ∆x and ∆y

In this second approach we study the Vertex resolution as function of the total momentum
of the track-pair. We can parametrise the distribution width of the two track impact points
(in the target) as

σ2
∆x = c2

1 +
ms2

1

P 2
−

+ c2
2 +

ms2
2

P 2
+

here c1 is the sigma (width) of the distribution of the x1 coordinate for the part of
the contribution that is momentum independent, ms1 is the sigma of the part of the
distribution that is momentum dependent.

c2 and ms2 have the same meaning but for positive particle. Let assume that c1 =
c2 = c and ms1 = ms2 = m,

σ2
∆x = 2 · c2 + (

1

P 2
−

+
1

P 2
+

) · ms2

Therefore it is reasonable to use

Z =
1

(P
−
· β−)2

+
1

(P+ · β+)2

and to fit σ2
∆x or the square of RMS of the ∆x distribution for different value of the

variable Z.
The error associated to this value is

Er(RMS2) =
RMS4

(Nb − 2)

where Nb is the number of events in the momentum bin b which were used for the cor-
responding RMS. For the error to associate to σ2

∆x, extracted from a Gaussian fit, the
situation is simpler: the fit procedure gives an estimation of error on σ∆x that we write
as Er(σ∆x) thus we can write:

Er(σ2
∆x) = 4 · σ2

∆x · Er2(σ∆x)

We divide the space covered by the variable Z in 11 bins of width 0.1, this covers the
space between 0.1 to 1.2 of the Z variable for our experimental data.

4.1 X projection

In the plot 3 are the experimental data and the best approximation of the Monte Carlo for
the X projection, the result of the fit as a second degree polinomial is reported in Table 9.
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Table 9: (Dx)2 as function of Z, Dx is the sigma resulting from a gaussian fit,P0, P1andP2

are the three parameters of a polynomial of second degree.
Data MS 1.0 MS 0.95 MS 0.90

P0 (0.007 ± 0.002 ) ( 0.012 ± 0.001 ) ( 0.012 ± 0.001 ) ( 0.013 ± 0.001 )

P1 (0.51 ± 0.02 ) ( 0.545 ± 0.006 ) ( 0.517 ± 0.006 ) ( 0.492 ± 0.006 )

P2 (-0.03 ± 0.02 ) ( -0.056 ± 0.007 ) ( -0.04 ± 0.007 ) ( -0.03 ± 0.006 )

Chi2 24/7 67/7 61/7 85/7

Ŝ2
∆x 0.287 ± 0.002 0.299 ± 0.0006 0.290 ± 0.0006 0.282 ± 0.0006

Table 10: (Dx)2 as function of Z, Dx is the sigma resulting from a gaussian fit,P0, P1andP2

are the three parameters of a polynomial of second degree.
Data MS 0.90 x 1.05 y MS 0.90 x 1.0 y

P0 (0.007 ± 0.002 ) ( 0.014 ± 0.001 ) ( 0.012 ± 0.001 )

P1 (0.51 ± 0.02 ) ( 0.518 ± 0.006 ) ( 0.518 ± 0.006 )

P2 (-0.03 ± 0.02 ) ( -0.035 ± 0.006 ) ( -0.044 ± 0.006 )

(Chi)2 24/7 98/7 42/7

Ŝ2
∆x 0.287 ± 0.002 0.295 ± 0.0006 0.2899 ± 0.0006

4.2 Y projection

The formulaes are just the same as for the X projection, just we replace ∆x with ∆y.
In the plot 4 are the experimental data and the best approximation of the Monte Carlo

for the Y projection, the result of the fit as a second degree polinomial is reported in Table
11..

Table 11: (Dy)2 as function of Z, Dy is the sigma resulting from a gaussian fit,P0, P1andP2

are the three parameters of a polynomial of second degree.
Data MS 1.0 MS 0.95 MS 0.90

P0 (0.001 ± 0.003 ) ( 0.02 ± 0.001 ) ( 0.013 ± 0.001 ) ( 0.014 ± 0.001 )

P1 (0.609 ± 0.02 ) ( 0.501 ± 0.006 ) ( 0.496 ± 0.006 ) ( 0.471 ± 0.006 )

P2 (-0.144 ± 0.02 ) ( -0.03 ± 0.007 ) ( -0.03 ± 0.006 ) ( -0.02 ± 0.006 )

(Chi)2 14/7 58/7 75/7 98/7

Ŝ2
∆y 0.293 ± 0.002 0.2908 ± 0.0006 0.2837 ± 0.0006 0.2736 ± 0.0006

Due to the difficulty to compare fit parameters (with a not so good (Chi)2 ) we have
reproduced the parameter Ŝ∆x and Ŝ∆y built as above but on the 11 bins as in the figure
3.
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Table 12: (Dy)2 as function of Z, Dy is the sigma resulting from a gaussian fit,P0, P1andP2

are the three parameters of a polynomial of second degree.
Data MS 0.90 x 1.05 y MS 0.90 x 1.0 y

P0 (0.001 ± 0.003 ) ( 0.012 ± 0.001 ) ( 0.013 ± 0.001 )

P1 (0.609 ± 0.02 ) ( 0.517 ± 0.006 ) ( 0.498 ± 0.006 )

P2 (-0.144 ± 0.02 ) ( -0.048 ± 0.006 ) ( -0.031 ± 0.006 )

(Chi)2 14/7 94/7 94/7

Ŝ2
∆y 0.293 ± 0.002 0.2867 ± 0.0006 0.2838 ± 0.0006

5 Cross assignement ..

Since in our analysis we are mainly interested in the transvers component δT =
√

δ(x)2 + δ(y)2

and not separately in the δ(x),δ(y) as a first approximation we have decided to choose the
MC simulation that provides the best cross agreement since we do not see how to tune
the single projection. This means that we look for the possibility to compare:

Ŝ2
∆x(data) ≃ Ŝ2

∆y(MC)

Ŝ2
∆y(data) ≃ Ŝ2

∆x(MC)

the MC0.90x1.0y corresponds exactly at this, having an agreement at best of 3.1×10−4

for X projection and 5.5 × 10−4 for Y, see figures 5, 6.

Ŝ2
∆x(data) = 0.2867 ≃ Ŝ2

∆y(MC) = 0.2868

Ŝ2
∆y(data) = 0.2933 ≃ Ŝ2

∆x(MC) = 0.2949
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5.1 Special studies

In order to undestand a bit better the results we did generate MonteCarlo events with
special conditions :

• NoMS ) No Multiple Scattering in any detector.

• NoMSH ) No Multiple Scattering and No Hadron interactions.

• allOFF ) all interaction are switched OFF.

In Figure 7 are the superimposed histograms of the σ2
∆x and σ2

∆y as function of Z when
in the simulation the Multiple scattering is swithched OFF.

Table 13: (Dx)2 as function of Z, Dx is the sigma resulting from a gaussian fit,P0, P1andP2

are the three parameters of a polynomial of second degree.
Data noMS no MSH all OFF

P0 (0.007 ± 0.002 ) ( 0.0003 ± 4.0 ·10−6 ) (0.0003 ± 4.0 ·10−6) (0.0003 ± 3.0 ·10−6)

P1 (0.51 ± 0.02 ) ( 0.0011 ± 1.8 ·10−5 ) ( 0.00109 ± 1.7 ·10−5 ) ( 0.00102 ± 1.4 ·10−5 )

P2 (-0.03 ± 0.02 ) ( -0.0005 ± 1.7 ·10−5) ( -0.0004 ± 1.6 ·10−5) ( -0.0004 ± 1.3 ·10−5)

Chi2 24/7 3647/7 3300/7 4372/7

Ŝ2
∆x 0.287 ± 0.002 7.85 ·10−4 ± 1.·10−6 7.85 ·10−4 ± 1.·10−6 7.80 ·10−4 ± 1.·10−6
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Table 14: (Dy)2 as function of Z, Dy is the sigma resulting from a gaussian fit,P0, P1andP2

are the three parameters of a polynomial of second degree.
Data no MS no MSH allOFF

P0 (0.001 ± 0.003 ) ( 0.0004 ± 2.0 ·10−6 ) ( 0.0004± 2.0 ·10−6 ) ( 0.0004 ± 2.0 ·10−6 )

P1 (0.609 ± 0.02 ) (-7. ·10−5 ± 7.0 ·10−6) ( -8.4 ·10−5 ± 8. ·10−6 ) ( -0.0001 ·10−5 ± 8. ·10−6 )

P2 (-0.144 ± 0.02 ) (-1.·10−5 ± 7.0 ·10−6) (9.·10−6 ± 7. ·10−6 ) (2. ·10−5 ± 7.·10−6)

(Chi)2 13/7 1329/7 1351/7 1947/7

Ŝ2
∆y 0.293 ± 0.002 3.36 ·10−4 ± 4.·10−7 3.36 ·10−4 ± 4.·10−7 3.32 ·10−4 ± 4.·10−7
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Figure 5: Comparison of the MS for the X plane of data with the Y plane from
MC0.90x1.0y
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Figure 6: Comparison of the MS for the Y plane of data with the X plane from
MC0.90x1.0y
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