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Abstract

DIRAC experiment reconstructs lifetime of π+π− atoms (A2π , pionium) through the measurement of
their ionization (break-up) probability Pion in a thin target. Method relies on the fact that dependence
Pion(τ) can be calculated with sufficient precision. The value of Pion is a result of competitive processes:
pionium annihilation vs. pionium ionization in the Coulomb field of target atoms. This note estimates
impact of uncertainties in the potential of a target atom on DIRAC results.

1 Interaction of the pionium with targets atoms

To calculate coherent scattering of a pionium on a target atom we use the first Born approximation [1]:

σf
i =

1

2πβ2

∞∫

0

|U(~q)|2 |Fif (~q/2)− Fif (−~q/2)|2 qdq. (1)

Here i and f are initial and final pionium states, β — the pionium velocity, Fif is the pionium form factor
as a function of the momentum transfer ~q, U(~q) stands for the target atomic potential (see Sec. 2).

By using completeness of the atomic states basis [1]

∑
f

|Fif (~q/2)− Fif (−~q/2)|2 = 2− 2Fii(~q) , (2)

one can derive the total cross section for the pionium to transit from the initial state i into any bound state
or to get ionized [1]

σtot

i =
∑
f

σf
i + σion

i =
1

πβ2

∞∫

0

|U(~q)|2 (1− Fii(~q)) qdq. (3)

2 Atomic potential

The atomic form factor as a function of the momentum transfer is the Fourier transform of its U(~r)
representation:

U(~q) =

∫
U(~r)ei~q~rd3r. (4)

For a spherically symmetrical atom

U(q) = 4π

∫
∞

0
U(r)

sin(qr)

qr
r2dr. (5)

The electrostatic atomic potential of a neutral atom with a nucleus as a point charge Z

U(r) =
Z

r
+

∫
∞

0

ρ(r′)

max{r, r′}
d3r′ =

Z

r
+

4π

r

∫ r

0
ρ(r′)r′2dr′ + 4π

∫
∞

r
ρ(r′)r′dr′ =

Z

r
φ(r), (6)
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where ρ(r) — the radial atomic electron density. Screening function φ(r) is linked to the atomic density
through Poisson’s equation

∇2U(r) = −4πρ(r), (7)

d2φ(r)

dr2
= −

4πr

Z
ρ(r). (8)

So as soon as the electron density ρ(r) is defined, the atomic potential U(q) is determined.

For completeness

F (q) = 4π

∫
∞

0
ρ(r)

sin(qr)

qr
r2dr (9)

is an atomic form factor for a spherically symmetrical atom.
In this work we use cubic-spline interpolation to reconstruct the accurate electronic density ρDF from

tabulated densities provided with ELSEPA program [2], where electron densities ρDF for free atoms were
calculated by [3] through the self-consistent multiconfiguration relativistic Dirac-Fock (DF) method. This
approach is compared to simple analytic approximations of the electronic density.

2.1 Analytic models to approximate the atomic potential

There is a simple analytic approximation [4], which describes the electrostatic atomic potential by a sum of
three Yukawa potentials (this class of approximations is often called the Molière-like parametrization). In
this approach the screening function φ(r) has a simple form [4]:

φ(r) =

3∑
i=1

Aie
−αir. (10)

Corresponding parametrization for the electron atomic density is

ρ(r) = −
Z

4πr

3∑
i=1

Aiα
2
i e

−αir. (11)

For the atomic form factor and the atomic potential:

F (q) = −Z

3∑
i=1

Aiα
2
i

q2 + α2
i

, (12)

U(q) = 4πZ

3∑
i=1

Ai

q2 + α2
i

. (13)

Normalization

4π

∫
∞

0
ρ(r)r2dr = Z ⇒ F (0) = Z ⇒

3∑
i=1

Ai = 1. (14)

Thus a Molière-like potential is described by five parameters.
Coefficients αi and Ai for the Molière-like parametrization of the Dirac-Hartree-Fock-Slater (DHFS)

potential are tabulated in [4] for atoms in the range Z = 1÷ 92 (see Tab. 1 for elements used in DIRAC as
target’s materials).

The original Molière parametrization [5] of a screening function for the Thomas-Fermi potential reads

φTFM(r) =

3∑
i=1

Bie
−βir/b, (15)
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Table 1: Parameters of the Molière-like parametrization of the Dirac-Hartree-Fock-Slater (DHFS)
potential [4]

Z A1 A2 α1 α2 α3

4 0.3278 0.6722 4.5430 0.9852
28 0.0474 0.7294 34.758 3.8299 1.2209
78 0.2230 0.6176 22.994 3.7346 1.4428

where b = (3π)2/3

27/3
Z−1/3 = 0.885Z−1/3 in atomic units and

B1 = 0.35, B2 = 0.55, B3 = 0.10, (16)

β1 = 0.3, β2 = 4β1, β3 = 20β1. (17)

TFM screening function is described by two parameters and is universal for all elements heavier than helium.
Corresponding electron density, atomic form factor and potential are

ρTFM(r) = −
Z

4πrb2

3∑
i=1

Biβ
2
i e

−βir/b, (18)

FTFM(q) = −Z
3∑

i=1

Biβ
2
i

b2q2 + β2
i

, (19)

UTFM(q) = 4πZ
3∑

i=1

Bi

q2 + β2
i /b

2
. (20)

As shown on Fig. 1 electron radial densities and corresponding form factors for simple Moliére-like
approximations are significantly different from corresponding distributions calculated through more accurate
Dirac-Fock method. Nevertheless for the atomic potential U(q) these differences are mostly cancelled during
integration (5). The Molière-like parametrization of the DHFS potential is much closer to the accurate
solution, while the Thomas-Fermi-Molière potential diverges away from it already at distance of the order of
one atomic unit.

Numerical integration (Eqs. 6 and 1) was performed by the Gauss-Kronrod adaptive method while the
Fourier transform (5) — through the indefinite integration of oscillatory functions using the Chebyshev
series expansion. Computer codes incorporated in GNU Scientific Library have been used to calculate above
integrals.

Integration towards cross sections (1) and (3) is effectively the triple integral. To control numeric
precision, the Molière-like atomic density (11) was tabulated on the same grid as ρDF and the result of
the triple integral was compared to the result obtained by using the analytic atomic potential (13). Relative
precision of the triple integral is better than 10−4.
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Figure 1: Electron radial densities (left) and corresponding atomic form-factors (right). Dirac–Fock (solid
line), the Molière parametrization of DHFS (dash line), the Molière parametrization of TF (dotted line).
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Figure 2: Atomic potentials (left) and corresponding U(q) (right). Dirac–Fock (solid line), the Molière
parametrization of DHFS (dash line), the Molière parametrization of TF (dotted line).
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3 Impact on DIRAC results

Use of different potentials modifies the integrand in (3) as shown in Fig. 3. Results for the total coherent
cross-section of pionium in 1S state for different potential models and different target materials are in Tab. 2.
Relative error in 1S total cross sections is less than 0.02.
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Figure 3: Integrand for the total coherent cross-section from 1S state: Dirac–Fock (solid line), the Molière-like
parametrization of the DHFS potential (dash line).

Table 2: Total coherent cross-sections from 1S state for different potential models
Z TFM Molière–DHFS Dirac–Fock

4 1.350e-22 1.359e-22 1.335e-22
28 5.599e-21 5.577e-21 5.528e-21
78 3.932e-20 3.769e-20 3.841e-20

We calculated all total and transition coherent cross-sections for pionium interacting with different targets
in the parabolic basis upto the principal quantum nmax = 8. It leads to an estimation of uncertainty in the
probability of pionium ionization due to simplifications in potential models (Tab. 3). Cited probabilities are
for the so-called maximal probability of ionization [6]. As expected uncertainty due to use of approximate
potential models is worse for light-Z Be than for heavier targets, like Ni or Pt.

Calculations of the ionization probability Pion, shown in Tab. 3, don’t include incoherent scattering
on target atoms. Incoherent scattering (target atoms excitation) contributes about 4% for Ni [9], almost
negligible for Pt, but amasses more than 1/3 of the cross-section value for Be.

Table 3: Uncertainty in P ∗

ion
due to simplifications in U(q) (τ = 2.9 fs, nmax = 8, PA = 4.5 GeV/c)

Rel. uncertainty: δ = Pion/Pion(Dirac–Fock)− 1

Z s, µm Dirac–Fock TFM δTFM, 10−2 M-DHFS δM-DHFS, 10−2

4 103.3 0.050652 0.051555 1.78 0.051778 2.22
28 108 0.46038 0.46319 0.61 0.46226 0.41
78 25.7 0.70976 0.71484 0.72 0.70564 -0.58
∗ — only coherent scattering is taken into account
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4 Discussion and Conclusions

So far there was a lot of work to increase precision in calculations of cross-sections and the probability of
pionium ionization in the target, which include multiphoton exchange, density-matrix formalism and so on
(see the review article [7] for references). Authors used either the Thomas-Fermi-Molière potential [8] or
a more advanced Molière parametrization of the Dirac-Hartree-Fock-Slater potential [9]. Ultimate goal for
DIRAC is to know Pion(τ) relation with precision better than 1%, otherwise this uncertainty will constitute
a major systematic error in the experiment [10]. While for Ni, use of approximate parametrizations for the
atomic potentials is tolerable, for Be target one should use a more accurate description of the potential.
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