Rates of spontaneous radiation transitions and natural lifetimes of excited states of $\pi^{+}-\pi^{-}(\mathbf{A} 2 \pi)$ atom

V.D. Ovsiannikov

February 16, 2015

Rates of spontaneous radiation transitions and natural lifetimes of excited states of $\pi^{+}-\pi^{-}\left(A_{2 \pi}\right)$ atom

V.D. Ovsiannikov
Voronezh State University, Universitetskaya sq.1, 394006, Voronezh, Russia

The lifetimes of hydrogen-like $A_{2 \pi}$ atom are basically determined by the spontaneous radiation decay rates unless the orbital momentum equals zero. The lifetime of an $n s$-state is determined by the dominating rate of annihilation connected with the process $\pi^{+}+\pi^{-} \rightarrow \pi^{0}+\pi^{0}$, which is about four orders greater than the rate of the radiation decay (see below the data of Table 1) and may be presented as a function of the principal quantum number $\tau_{n s}^{a n n}=3 \cdot 10^{-15} \cdot n^{3} / \mathrm{s}$. So, the possibilities exist to observe sufficiently long distances of flight of relativistic $A_{2 \pi}$ atoms, only if they appear in states with nonzero angular momentum. We present below the numerical data for the lifetimes of excited states of $A_{2 \pi}$ atom, determined by the spontaneous decay rates in comparison with the annihilation rate for $n s$ states.

The general relation for spontaneous radiation transition from an initial excited bound state $|n l m\rangle$ to a final state $\left|n^{\prime} l^{\prime} m^{\prime}\right\rangle$ of an isolated $A_{2 \pi}$ atom, after integration over emitted-photon wavevector directions, may be presented, as [1]

$$
\begin{equation*}
\left.P_{n l m \rightarrow n^{\prime} l^{\prime} m^{\prime}}^{s p}=\frac{4 \omega_{n n^{\prime}}^{3}}{3 c^{3}}\left|\left\langle n^{\prime} l^{\prime} m^{\prime}\right| D_{\mu}\right| n l m\right\rangle\left.\right|^{2}, \tag{1}
\end{equation*}
$$

where $c=137.036 \mathrm{a}$. u. is the speed of light, $\omega_{n n^{\prime}}=E_{n}-E_{n^{\prime}}$ is the frequency of emitted photon, $D_{\mu}=r \mathbf{C}_{1 \mu}(\mathbf{r} / r)$ is the dipole operator of atom $\left(\mathbf{r}=r \mathbf{e}_{r}\right.$ is the position vector of the π^{+}meson relative the π^{-}meson, $\mathbf{C}_{1 \mu}\left(\mathbf{e}_{r}\right)$ is the modified spherical function of the position-vector angular variables [2]). The rate (1) of transition to a final state with fixed m^{\prime} determines also the probability of emission of spontaneous photon with fixed polarization: along the quantization axis ($\mu=0$), and in a plane, perpendicular to this axis $(\mu= \pm 1)$. Generally speaking, these separate probabilities are strongly dependent on the initial-state magnetic quantum number m, except for states 2 p and 3 p which can decay only into spherically symmetric 1 s - and 2 s -states.

Meanwhile, for the total decay rate $P_{n l m}^{d e c}=\sum_{n \uparrow m^{\prime}} P_{n l m \rightarrow n^{\prime} I^{\prime} m^{\prime}}^{s s}$ of the state $|n l m\rangle$ the sum over m^{\prime} (which automatically involves the summation over μ) of expression in the right-hand side of (1) gives an m-independent result. The summations may be performed analytically after integration of the dipole matrix element over angular variables [2]:

$$
\begin{equation*}
\left.P_{n l m}^{d e c}=\frac{4}{3 c^{3}} \sum_{n, t m^{\prime} \mu} \omega_{n n^{\prime}}^{3}\left|\left\langle n^{\prime} l^{\prime}\right| r\right| n l\right\rangle\left.\right|^{2} \frac{2 l+1}{2 l^{\prime}+1}\left(C_{l 010}^{l^{0} 0}\right)^{2}\left(C_{l m 1 \mu}^{l^{\prime} m^{\prime}}\right)^{2}=\left.\frac{4}{3 c^{3}} \sum_{n^{\prime} \prime} \frac{l_{c} \omega_{n n^{\prime}}^{3}}{2 l+1}\left\langle\left\langle n^{\prime} l^{\prime}\right| r \mid n l\right\rangle\right|^{2}, \tag{2}
\end{equation*}
$$

where $l_{>}=\left(l+l^{\prime}+1\right) / 2$ is the greater of the two momentums l and l^{\prime}. Thus, after calculating sums of Clebsh-Gordan coefficients $C_{l_{m} l^{\prime} \mu}^{l^{\prime}}$ over the final-state magnetic quantum numbers m^{\prime}, only summation over final-state principal and orbital quantum numbers remains in equation (2) determining the total decay rate of an excited state $|n l m\rangle$ and its lifetime $\tau_{n l m}^{s p}=1 / P_{n l m}^{d e c}$, both independent of the magnetic quantum number. Consequently, the right-hand side of equation (2) does not change after averaging over the initial-state magnetic quantum number m,

$$
\begin{equation*}
P_{n l}^{d e c}=\frac{1}{2 l+1} \sum_{m=-l}^{m=l} P_{n l m}^{d e c}=P_{n l m}^{d e c} \tag{3}
\end{equation*}
$$

So, the calculation of rates (3) is reduced to determining l-independent transition frequencies $\omega_{n n}$. and l-dependent radial matrix elements $\left\langle n^{\prime} l^{\prime}\right| r|n l\rangle$. The latter may be performed with the use of

Gordon equations in terms of two Gauss hypergeometric functions ${ }_{2} F_{1}(a, b ; c ; z)$ [3] of three parameters and one variable (see, for example [4]). An alternative equation may be proposed, written in terms of the generalized hypergeometric function of two variables and five parameters $F_{2}\left(a ; b_{1}, b_{2} ; c_{1}, c_{2} ; x_{1}, x_{2}\right)$ [3], as follows

$$
\begin{align*}
\left\langle n^{\prime} l^{\prime}\right| r|n l\rangle= & \frac{1}{4}\left(\frac{2 n^{\prime}}{n+n^{\prime}}\right)^{l+2}\left(\frac{2 n}{n+n^{\prime}}\right)^{l^{\prime}+2} \frac{\left(l+l^{\prime}+3\right)!}{(2 l+1)!\left(2 l^{\prime}+1\right)!} \sqrt{\frac{(n+l)!\left(n^{\prime}+l^{\prime}\right)!}{n_{r}!n_{r}^{\prime}!}} \times \tag{4}\\
& \times F_{2}\left(l+l^{\prime}+4 ;-n_{r},-n_{r}^{\prime} ; 2 l+2,2 l^{\prime}+2 ; \frac{2 n^{\prime}}{n+n^{\prime}}, \frac{2 n}{n+n^{\prime}}\right),
\end{align*}
$$

where $n_{r}=n-l-1$ is the radial quantum number. We perform calculations in the pionium system of units which differs from the atomic units by the ratio of the reduced mass of the pionium atom to the mass of electron, $m_{\pi} / m_{e} \approx 136.6$. This factor enlarges the unit of energy and reduces the unit of length in comparison with those of commonly used atomic system of units. Therefore, the radiation transition probabilities equal to those of hydrogen times 136.6. Thus computed data, presented in Table 1 for the dipole transitions from excited states of $A_{2 \pi}$ atom, are in satisfactory agreement with corresponding data for hydrogen of the book [4]. As is seen from the table, the principal contributions to spontaneous decay rate of $n l$-state come from transitions into the lowest $n^{\prime}(l-1)$ states. For hydrogen-like states with highest possible angular momentums $l=n-1$ and $l=n-2$ (so-called circular and near-circular states) only transitions into states with lower momentums $l^{\prime}=l-1=n-2$ and $l^{\prime}=n-3$, correspondingly, are allowed. Therefore, these states have the longest lifetimes among all n^{2} degenerate substates of the hydrogenic n-shell with different angular momentums l. Analytical equations may be written for the rates of downward dipole transitions from these long-living states (in atomic units):

$$
\begin{align*}
& P_{n l \rightarrow n-1 l-1}^{s p}(l=n-1)=\frac{(2 n-1)}{3 c^{3} n^{4}(n-1)^{2}}\left(\frac{4 n(n-1)}{(2 n-1)^{2}}\right)^{2 n} \frac{m_{\pi}}{m_{e}} \tag{5}\\
& P_{n l \rightarrow n-1 l-1}^{s p}(l=n-2)=\frac{(2 n-1)^{3}(n-2)}{12 c^{3} n^{6}(n-1)^{3}}\left(\frac{4 n(n-1)}{(2 n-1)^{2}}\right)^{2 n} \frac{m_{\pi}}{m_{e}} \tag{6}\\
& P_{n l \rightarrow n-2 l-1}^{s p}(l=n-2)=\frac{8(n-1)^{4}}{3 c^{3} n^{6}(n-2)^{4}}\left(\frac{n(n-2)}{(n-1)^{2}}\right)^{2 n} \frac{m_{\pi}}{m_{e}} \tag{7}
\end{align*}
$$

The factor $1.6065 \cdot 10^{10} \mathrm{~s}^{-1} /$ a.u. transforms the numerical values given by these expressions in atomic units into the rates in the units of s^{-1}. With inclusion of the mass ratio into this factor, $m_{\pi} / m_{e} \cdot 1.6065 \cdot 10^{10} \mathrm{~s}^{-1} / \mathrm{a} . \mathrm{u} .=2.1945 \cdot 10^{12} \mathrm{~s}^{-1} /$ a.u., equation (5) gives an asymptotic (for $\mathrm{n} \rightarrow \infty$) expression for the lifetimes of the circular orbits of the $A_{2 \pi}$ atom (in picoseconds)

$$
\begin{equation*}
\tau_{n l}^{s p}(l=n-1) \approx 0.68354 \cdot n^{4}(n-1) \mathrm{ps} . \tag{8}
\end{equation*}
$$

Numerical values given by asymptotic approximation (8) differ from those of the exact result (5) by about 0.1% for $\mathrm{n}=10$, by 0.001% for $n=100$.

References

[1] Sobelman I.I. 1996, "Atomic spectra and radiative transitions" (Berlin: Springer). (Vvedenie v teoriyu atomnykh spektrov", 1977, Moscow: Nauka).
[2] Varshalovich D.A., Moskalev A.N. and Khersonskii V.K. 1988 "Quantum theory of angular momentum" (Singapore: World Scientific)
[3] Bateman H. and Erdelyi, 1953, "Higher transcendental functions" (NY: McGraw-Hill)
[4] Bethe H.A. and Salpeter, 1957, "Quantum mechanics of one- and two-electron atoms" (Berlin: Springer-Verlag).

Table 1. Rates of dipole radiation decay, spontaneous radiation lifetimes $\boldsymbol{\tau}_{n l}^{s p}$ of excited states of $A_{2 \pi}$ atom and ns-state-annihilation lifetimes $\tau_{n s}^{a n n}$ connected with the process " $\pi^{+}+\pi^{-} \rightarrow \pi^{0}+\pi^{0}$ ".

$n l$	$n^{\prime}{ }^{\prime}$	$P_{n l \rightarrow n^{\prime} l^{\prime} /\left(10^{9} / \mathrm{s}\right)}$	$P_{n l}^{\text {dec }} /\left(10^{9} / \mathrm{s}\right)$	$\tau_{n l}^{s p}=1 / P_{n l}^{\text {dec }} / \mathrm{ns}$	$\tau_{n s}^{a n n}=3 \cdot 10^{-6} n^{3} / \mathrm{ns}$
2p	1s	85.62	85.62	0.01168	
3s	2p	0.8629	0.8629	1.1589	$8.1 \cdot 10^{-5}$
3p	$\begin{array}{\|l} \hline 1 \mathrm{~s} \\ 2 \mathrm{~s} \\ \hline \end{array}$	$\begin{aligned} & \hline 22.86 \\ & 3.068 \\ & \hline \end{aligned}$	25.93	0.03857	
3d	2p	8.836	8.836	0.11317	
4s	$\begin{aligned} & 2 p \\ & 3 p \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.35236 \\ 0.25085 \\ \hline \end{array}$	0.60322	1.6578	$1.92 \cdot 10^{-4}$
4p	$\begin{array}{\|l} \hline 1 \mathrm{~s} \\ 2 \mathrm{~s} \\ 3 \mathrm{~s} \\ 3 \mathrm{~d} \\ \hline \end{array}$	$\begin{aligned} & \hline 9.319 \\ & 1.321 \\ & 0.419 \\ & 0.0475 \end{aligned}$	$\begin{aligned} & 11.060 \\ & 11.107 \\ & \hline \end{aligned}$	0.09003	
4d	$\begin{array}{\|l} \hline 2 \mathrm{p} \\ 3 \mathrm{p} \\ \hline \end{array}$	$\begin{aligned} & 2.819 \\ & 0.962 \\ & \hline \end{aligned}$	3.781	0.2645	
4f	3d	1.884	1.884	0.5307	
5s	$\begin{array}{\|l} \hline 2 \mathrm{p} \\ 3 \mathrm{p} \\ 4 \mathrm{p} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.17612 \\ 0.12365 \\ 0.08816 \\ \hline \end{array}$	0.38793	2.5778	$3.75 \cdot 10^{-4}$
5p	$\begin{array}{\|l\|} \hline 1 \mathrm{~s} \\ 2 \mathrm{~s} \\ 3 \mathrm{~s} \\ 4 \mathrm{~s} \\ 3 \mathrm{~d} \\ 4 \mathrm{~d} \\ \hline \end{array}$	4.6982 0.67630 0.22383 0.10075 0.02044 0.02576	$\begin{array}{\|l} 5.6991 \\ 5.7453 \\ \hline \end{array}$	0.17406	
5d	$\begin{array}{\|l} \hline 2 \mathrm{p} \\ 3 \mathrm{p} \\ 4 \mathrm{p} \\ 4 \mathrm{f} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.2882 \\ 0.46352 \\ 0.20307 \\ 0.00690 \\ \hline \end{array}$	1.9617	0.50977	
5f	$\begin{array}{\|l\|} \hline 3 \mathrm{~d} \\ 4 \mathrm{~d} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.62079 \\ 0.35322 \\ \hline \end{array}$	0.97401	1.02668	
5 g	4f	0.58143	0.58143	1.71989	
6s	$\begin{array}{\|l} \hline 2 p \\ 3 p \\ 4 p \\ 5 p \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 0.10045 \\ 0.06932 \\ 0.04896 \\ 0.03665 \\ \hline \end{array}$	0.25538	3.91567	$4.48 \cdot 10^{-4}$
6p	$\begin{aligned} & \hline 1 \mathrm{~s} \\ & 2 \mathrm{~s} \\ & 3 \mathrm{~s} \\ & 4 \mathrm{~s} \\ & 5 \mathrm{~s} \\ & 3 \mathrm{~d} \\ & 4 \mathrm{~d} \\ & 5 \mathrm{~d} \\ & \hline \end{aligned}$	2.69634 0.39066 0.13053 0.06090 0.03321 0.01069 0.01287 0.01311	$\begin{array}{\|l\|} \hline 3.31164 \\ 3.34831 \end{array}$	0.29866	
6d	$\begin{aligned} & \hline 2 \mathrm{p} \\ & 3 \mathrm{p} \\ & 4 \mathrm{p} \\ & 5 \mathrm{p} \\ & 4 \mathrm{f} \\ & 5 \mathrm{f} \\ & \hline \end{aligned}$	0.70318 0.25664 0.11784 0.06143 0.00293 0.00534	1.14737	0.87156	

Table 1 (continuation).

$n l$	$n^{\prime} l^{\prime}$	$P_{n l \rightarrow n^{\prime} l^{\prime} /\left(10^{9} / \mathrm{s}\right)}$	$P_{n l}^{\text {dec }} /\left(10^{9} / \mathrm{s}\right)$	$\tau_{n l}^{s p}=1 / P_{n l}^{\text {dec }} / \mathrm{ns}$	$\tau_{n s}^{a n n}=3 \cdot 10^{-6} n^{3} / \mathrm{ns}$
6f	$\begin{aligned} & \hline 3 \mathrm{~d} \\ & 4 \mathrm{~d} \\ & 5 \mathrm{~d} \\ & 5 \mathrm{~g} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.29331 \\ 0.17590 \\ 0.09885 \\ 0.00155 \\ \hline \end{array}$	0.56960	1.75560	
6 g	$\begin{array}{\|c\|} \hline 4 \mathrm{f} \\ 5 \mathrm{f} \end{array}$	$\begin{array}{\|l} \hline 0.18762 \\ 0.15112 \end{array}$	0.33874	2.95211	
6h	5 g	0.22480	0.22480	4.44831	
7s	$\begin{aligned} & 2 p \\ & 3 p \\ & 4 p \\ & 5 p \\ & 6 p \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.06269 \\ 0.04275 \\ 0.02971 \\ 0.02210 \\ 0.01729 \end{array}$	0.17454	5.72924	$1.035 \cdot 10^{-3}$
7p	$\begin{aligned} & \hline 1 \mathrm{~s} \\ & 2 \mathrm{~s} \\ & 3 \mathrm{~s} \\ & 4 \mathrm{~s} \\ & 5 \mathrm{~s} \\ & 6 \mathrm{~s} \\ & 3 \mathrm{~d} \\ & 4 \mathrm{~d} \\ & 5 \mathrm{~d} \\ & 6 \mathrm{~d} \end{aligned}$	1.68954 0.24562 0.08235 0.03865 0.02174 0.01338 0.00634 0.00737 0.00725 0.00698	$\begin{gathered} 2.09129 \\ 2.11922 \end{gathered}$	0.47187	
7d	2p $3 p$ $4 p$ $5 p$ $6 p$ $4 f$ $4 f$ $5 f$ $6 f$	0.42793 0.15712 0.07295 0.03967 0.02329 0.00154 0.00261 0.00345	$\begin{array}{\|l\|} 0.72096 \\ 0.72856 \\ \hline \end{array}$	1.37257	
7 f	$\begin{array}{\|l} \hline 3 \mathrm{~d} \\ 4 \mathrm{~d} \\ 5 \mathrm{~d} \\ 6 \mathrm{~d} \\ 5 \mathrm{~g} \\ 6 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline 0.16497 \\ 0.10032 \\ 0.05920 \\ 0.03545 \\ 0.00064 \\ 0.00152 \\ \hline \end{array}$	$\begin{array}{\|l} 0,35994 \\ 0.36209 \end{array}$	2.76174	
7 g	$\begin{aligned} & \hline \text { 4f } \\ & 5 \mathrm{f} \\ & 6 \mathrm{f} \\ & 6 \mathrm{~h} \end{aligned}$	$\begin{aligned} & \hline 0.08827 \\ & 0.07492 \\ & 0.05144 \\ & 0.00046 \end{aligned}$	$\begin{aligned} & 0.21463 \\ & 0.21509 \end{aligned}$	4.64932	
7h	$\begin{array}{\|l\|} \hline 5 \mathrm{~g} \\ 6 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.06953 \\ 0.07275 \\ \hline \end{array}$	0.14227	7.02867	
7 i	6h	0.10124	0.10124	9.87709	

Table 1 (continuation).

$n l$	$n^{\prime} l^{\prime}$	$P_{n l \rightarrow n^{\prime} l^{\prime} /\left(10^{9} / \mathrm{s}\right)}^{\text {sp }}$	$P_{n l}^{\text {dec }} /\left(10^{9} / \mathrm{s}\right)$	$\tau_{n l}^{s p}=1 / P_{n l}^{\text {dec }} / \mathrm{ns}$	$\tau_{n s}^{a n n}=3 \cdot 10^{-6} n^{3} / \mathrm{ns}$
8 s	$\begin{aligned} & 2 \mathrm{p} \\ & 3 \mathrm{p} \\ & 4 \mathrm{p} \\ & 5 \mathrm{p} \\ & 6 \mathrm{p} \\ & 7 \mathrm{p} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.04174 \\ 0.02825 \\ 0.01940 \\ 0.01421 \\ 0.01108 \\ 0.00898 \end{array}$	0.12366	8.08678	$1.54 \cdot 10^{-3}$
8p	$\begin{aligned} & 1 \mathrm{~s} \\ & 2 \mathrm{~s} \\ & 3 \mathrm{~s} \\ & 4 \mathrm{~s} \\ & 5 \mathrm{~s} \\ & 6 \mathrm{~s} \\ & 7 \mathrm{~s} \\ & 3 \mathrm{~d} \\ & 4 \mathrm{~d} \\ & 5 \mathrm{~d} \\ & 6 \mathrm{~d} \\ & 7 \mathrm{~d} \end{aligned}$	$\begin{array}{\|l} \hline 1.12822 \\ 0.16435 \\ 0.05519 \\ 0.02593 \\ 0.01464 \\ 0.00927 \\ 0.00620 \\ 0.00408 \\ 0.00464 \\ 0.00444 \\ 0.00416 \\ 0.00393 \end{array}$	$\begin{aligned} & 1.40379 \\ & 1.42503 \end{aligned}$	0.70174	
8 d	2p 3 p 4 p 5 p 6 p 7 p 4 f 5 f 6 f	$\begin{aligned} & 0.28050 \\ & 0.10330 \\ & 0.04817 \\ & 0.02642 \\ & 0.01612 \\ & 0.01031 \\ & 0.00092 \\ & 0.00149 \\ & 0.00186 \\ & 0.00218 \end{aligned}$	$\begin{aligned} & 0.48482 \\ & 0.49127 \end{aligned}$	2.03556	
8 f	$\begin{aligned} & 3 \mathrm{~d} \\ & 4 \mathrm{~d} \\ & 5 \mathrm{~d} \\ & 6 \mathrm{~d} \\ & 7 \mathrm{~d} \\ & 5 \mathrm{~g} \\ & 6 \mathrm{~g} \\ & 7 \mathrm{~g} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.10304 \\ 0.06301 \\ 0.03763 \\ 0.02359 \\ 0.01505 \\ 0.00033 \\ 0.00072 \\ 0.00116 \\ \hline \end{array}$	$\begin{aligned} & 0.24232 \\ & 0.24452 \\ & \hline \end{aligned}$	4.08967	
8g	$\begin{aligned} & 4 \mathrm{f} \\ & 5 \mathrm{f} \\ & 6 \mathrm{f} \\ & 7 \mathrm{f} \\ & 6 \mathrm{~h} \\ & 7 \mathrm{~h} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.04979 \\ 0.04284 \\ 0.03092 \\ 0.02099 \\ 0.00018 \\ 0.00053 \end{array}$	$\begin{aligned} & 0.14454 \\ & 0.14525 \end{aligned}$	6.88471	
8h	$\begin{aligned} & 5 \mathrm{~g} \\ & 6 \mathrm{~g} \\ & 7 \mathrm{~g} \\ & 7 \mathrm{i} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.03196 \\ & 0.03523 \\ & 0.02859 \\ & 0.00016 \end{aligned}$	$\begin{aligned} & 0.09578 \\ & 0.09594 \end{aligned}$	10.4228	
8 i	$\begin{aligned} & \hline 6 \mathrm{~h} \\ & 7 \mathrm{~h} \end{aligned}$	$\begin{array}{\|l} \hline 0.02973 \\ 0.03835 \end{array}$	0.06809	14.6872	
8 j	7 i	0.05091	0.05091	19.6431	

