A constructive way to calculate a yield of $\pi^{+} \pi^{-}$-atoms from the Be target

M. Zhabitsky
Joint Institute for Nuclear Research, Dubna, Russia

February 5, 2019

Abstract

This note describes details of a constructive approach to calculate with sufficient precision a yield of $\pi^{+} \pi^{-}$-atoms from the Be target.

Variables and main equations are as in the paper (6]. A work mainly focuses on the way to solve an infinite system of kinetic (transport) equations, which describes dynamic of $\pi^{+} \pi^{-}$atoms crossing the Be foil.

1 Solution A

A straightforward way to solve the system of transport equations, which contains infinite number of equations, is to take into account all quantum levels with principal quantum number $n \in$ $\left[1, \ldots, n_{\max }\right]$ and analyze the behavior of numerical solutions as a cut on $n_{\max }$ is increased. We will call this "Solution A".

We define following distinct sums of final states.
An estimation of total probability to leave a target in a bound state with the principal quantum number $n \leqslant n_{\max }$:

$$
\begin{equation*}
P_{\mathrm{dsc}}\left(n_{\max }\right)=\sum_{n=1}^{n_{\max }} P_{\mathrm{dsc}}(n)=\sum_{n=1}^{n_{\max }} \sum_{l, m}|n l m\rangle^{2} . \tag{1}
\end{equation*}
$$

An estimation of total probability to annihilate from bound states with the principal quantum number $n \leqslant n_{\text {max }}$:

$$
\begin{equation*}
P_{\mathrm{anh}}\left(n_{\max }\right)=\sum_{n=1}^{n_{\max }} P_{\mathrm{anh}}(n)=\sum_{n=1}^{n_{\max }} P_{\mathrm{anh}}(|n 00\rangle) . \tag{2}
\end{equation*}
$$

An estimation of total probability for an atom to got ionized from bound states with the principal quantum number $n \leqslant n_{\text {max }}$:

$$
\begin{equation*}
P_{\mathrm{ion}}\left(n_{\max }\right)=\sum_{n=1}^{n_{\max }} P_{\mathrm{ion}}(n)=\sum_{n=1}^{n_{\max }} \sum_{l, m} P_{\mathrm{ion}}(|n l m\rangle) . \tag{3}
\end{equation*}
$$

$P_{\text {unrec }}\left(n_{\max }\right)$ is an estimation of the probability for an atom to reach a highly-excited states with $n>n_{\max }$. This artificial level is an effective trap: atoms can reach it, but never leave it. This level doesn't change Solution A, it is introduced to verify unitarity of a numerical solution of the limited system of transport equations (with it system becomes complete). Probability $P_{\text {unrec }}\left(n_{\max }\right)$ is expected to converge to zero as we increase $n_{\max } \rightarrow \infty$.

Limited systems of transport equations were numerically solved for all $n_{\max } \in[1, \ldots, 10]$. Sums of distinct final states as a function of $n_{\max }$ are shown in Figs. 112. Distributions were fitted by a function $\left(p_{0} \exp \left(-p_{1} n_{\max }\right)+p_{2}\right)$ to analyze convergence of solutions as $n_{\max } \rightarrow \infty$. The most precise solution at $n_{\max }=10$ is shown in Tab. 1 1 .

As expected only low lying levels $1 \mathrm{~S}, 2 \mathrm{~S}$ and 3 S contribute to annihilation. If one uses $n_{\max } \geqslant 4$ then the probability of annihilation is known with absolute precision better than 10^{-4}.

Figure 1: Estimated probability of pionium to leave the Be target in a bound state $P_{\text {dsc }}$ (left) or annihilate $P_{\text {anh }}$ (right) as a function of $n_{\text {max }}$.

Figure 2: Estimated probability of pionium to got ionized $P_{\text {ion }}$ (left) or reach highly excited bound states with $n>n_{\max } P_{\text {unrec }}$ (right) as a function of $n_{\text {max }}$.

Table 1: Sums of distinct final states at $n_{\max }=10$ for solution A.

P_{dsc}^{A}	$P_{\text {anh }}^{A}$	$P_{\text {ion }}^{A}$	$P_{\text {unrec }}^{A}$	$\left\|1-\left(P_{\mathrm{dsc}}^{A}+P_{\text {anh }}^{A}+P_{\text {ion }}^{A}+P_{\text {unrec }}^{A}\right)\right\|$
0.2150	0.7227	0.0319	0.0305	$<7 \cdot 10^{-14}$

If we further increase $n_{\max }$, we refine precision of contributions to leave a target in any bound state or got ionized, namely we try to find out how the value ($1-P_{\mathrm{anh}}$) is shared between P_{dsc}^{A} and P_{ion}^{A}. The striking feature of the solution A is that the expected convergence of $P_{\mathrm{unrec}}^{A}\left(n_{\max }\right)$ to zero is not obvious. As the numerical solution is sufficiently accurate (unitarity is conserved with precision better than 10^{-13} - see Tab. 11, round-off errors do not affect the result. This means that

$$
\lim _{n_{\max } \rightarrow \infty} P_{\text {unrec }}^{A}=P_{\text {unrec }, \infty}^{A}=0.028
$$

is an estimation of the unitarity violation by the Solution A due to the truncation of the infinite system of kinetic equations. Term $P_{\text {unrec, } \infty}^{A}$ will provide an additional not yet accounted impact on aggregate sums of $P_{\text {ion }}$ and P_{dsc}.

By its construction, solution A provides only lower estimates on aggregate probabilities $P_{\text {ion }}$ and P_{dsc}.

The profile of bound state populations on the principal quantum number n, estimated by solution A at $n_{\max }=10$, is in Tab. 2. With respect to the "true" profile (Fig. 3) there is a decrease in populations $P_{\mathrm{dsc}}(n)$, which becomes larger as $n \rightarrow n_{\max }$. This decrease affects the profile slope on n as well.

If one takes into account all levels up to sufficiently large $n_{\max }$ (e.g. $n_{\max }>4$), solution A provides a strict range on an unknown true sum of all bound states populations

$$
\begin{gather*}
P_{\mathrm{dsc}}^{A}\left(n_{\max }\right)<P_{\mathrm{dsc}}^{\mathrm{true}}<P_{\mathrm{dsc}}^{A}\left(n_{\max }\right)+P_{\mathrm{unrec}}^{A}\left(n_{\max }\right), \tag{4}\\
0.2150<P_{\mathrm{dsc}}^{\mathrm{true}}<0.2454 \quad \text { at } n_{\max }=10 .
\end{gather*}
$$

Table 2: $P_{\mathrm{dsc}}(n)=\sum_{l, m}|n l m\rangle^{2}$ at $n_{\max }=10$ for solution A.

n	1	2	3	4	5	6	7	8	9	10
$P_{\mathrm{dsc}}^{A}(n)$	0.1108	0.0596	0.0217	0.0099	0.0053	0.0032	0.0020	0.0013	0.0008	0.0004

Figure 3: Estimated probabilities for pionium to leave the Be target in a bound state with the particular principal number n, if $n_{\max }=5$ is used in calculations A (dotted line). Solid line an estimation of a "true" solution for the system of kinetic equations without cut ($n_{\max } \rightarrow \infty$).

2 Solution B

Rather than try to solve the infinite system of transport equations directly, there is an another approach [6], called "solution B", which provides strict upper and lower bounds on aggregate probabilities P_{dsc} and $P_{\text {ion }}$. Solution B takes into account dynamics of highly-excited states with $n>n_{\max }$. It replaces infinite number of bound states with $n>n_{\max }$ by one effective level (see $\sqrt{6}$ for details). The cross-section of ionization from this effective level is set to be less than from any bound state $n>n_{\max }$. The probability for an atom to be de-excited from states with $n>n_{\max }$ into states with $n \leqslant n_{\max }$ is taken into account as well.

In solution B the system of kinetic equations is constructed in the way that ionization is underestimated and all competitive processes including de-excitation from high n states (thus transitions to bound states with even lower ionization) are overestimated, therefore the solution is the mathematical lower bound of the probability of ionization.

As the probability of annihilation is very well known for solutions with $n_{\max } \geqslant 4$, the sum $P_{\mathrm{dsc}}+P_{\mathrm{ion}}=1-P_{\mathrm{anh}}$ is almost constant. This way the lower bound on the probability of ionization leads to the upper bound on the aggregate probability to leave a target in any bound state.

Limited systems of transport equations were numerically solved for all $n_{\max } \in[1, \ldots, 8]$, as the set of ionisation cross-sections is known up to $n=8$ [4]. Sums of distinct final states as a function of $n_{\max }$ are shown in Figs. 4-5. Distributions were fitted by a function $\left(p_{0} \exp \left(-p_{1} n_{\max }\right)+p_{2}\right)$ to analyze convergence of solutions as $n_{\max } \rightarrow \infty$. The most precise solution at $n_{\max }=8$ is shown in Tab. 3.

Solution B provides the correct zero asymptotic value for the aggregate sum of high- n states as $n_{\max } \rightarrow \infty$. Convergence of the ionisation sum $P_{\text {ion }}^{B}\left(n_{\max }\right)$ is slow, nevertheless the asymptotic value $P_{\text {ion }}^{B}$ can be estimated. The asymptotic value for P_{dsc}^{B} is more difficult to estimate (see Fig. 7).

The profile of bound state populations on the principal quantum number n, estimated by solution B at $n_{\max }=8$, is in Tab. 4. With respect to the "true" profile (Fig. 6) there is a positive perturbation in populations $P_{\mathrm{dsc}}(n)$, which becomes larger as $n \rightarrow n_{\text {max }}$.

If one takes into account all levels up to sufficiently large $n_{\max }$ (e.g. $n_{\max }>4$), a strict upper bound on an unknown true sum of all bound states populations can be calculated

$$
\begin{gather*}
P_{\mathrm{dsc}}^{\text {true }}<P_{\mathrm{dsc}}^{B}\left(n_{\max }\right)+P_{\mathrm{unrec}}^{B}\left(n_{\max }\right), \tag{5}\\
P_{\mathrm{dsc}}^{\text {true }}<0.2349 \quad \text { at } n_{\max }=8 .
\end{gather*}
$$

Figure 4: Estimated probability of pionium to leave the Be target in a bound state P_{dsc} (left) or annihilate $P_{\text {anh }}$ (right) as a function of $n_{\max }$.

Figure 5: Estimated probability of pionium to got ionized P_{ion}^{B} (left) and probability P_{unrec}^{B} (right) as a function of $n_{\text {max }}$.

Table 3: Sums of distinct final states at $n_{\max }=8$ for solution B.

P_{dsc}^{B}	P_{anh}^{B}	P_{ion}^{B}	$P_{\text {unrec }}^{B}$	$\left\|1-\left(P_{\mathrm{dsc}}^{B}+P_{\mathrm{anh}}^{B}+P_{\text {ion }}^{B}+P_{\mathrm{unrec}}^{B}\right)\right\|$
0.2347	0.7227	0.0423	0.0003	$<3 \cdot 10^{-14}$

3 Range on real population of discrete states (Solutions A and B)

Combining lower (4) and upper (5) bounds we obtain a range of possible values of $P_{\mathrm{dsc}}^{\text {true }}$

$$
\begin{gather*}
P_{\mathrm{dsc}}^{A}\left(n_{\max }\right)<P_{\mathrm{dsc}}^{\mathrm{true}}<P_{\mathrm{dsc}}^{B}\left(n_{\max }\right)+P_{\mathrm{unrec}}^{B}\left(n_{\max }\right) \tag{6}\\
0.2150<P_{\mathrm{dsc}}^{\mathrm{true}}<0.2349
\end{gather*}
$$

Table 4: $P_{\mathrm{dsc}}(n)=\sum_{l, m}|n l m\rangle^{2}$ at $n_{\max }=8$ for solution B.

n	1	2	3	4	5	6	7
$P_{\mathrm{dsc}}(n)$	0.1108	0.0597	0.0221	0.0109	0.0074	0.0068	0.0076

Figure 6: Estimated probabilities for pionium to leave the Be target in a bound state with the particular principal number n, if $n_{\max }=5$ is used in calculations B (dotted line). Solid line an estimation of a "true" solution for the system of kinetic equations without cut $\left(n_{\max } \rightarrow \infty\right)$.

Figure 7: Range on real $P_{\text {dsc }}$ after the Be target.

References

[1] J. Schweizer. Decay widths and energy shifts of $\pi \pi$ and πK atoms. Phys. Lett. B 587 (2004) 33.
[2] St. Mrowczynski. Interaction of elementary atoms with matter. Phys. Rev. A 33 (1986) 1549.
[3] L.G. Afanasyev and A.V. Tarasov. Passage of Atoms Formed by π^{+}and π^{-}Mesons Through a Matter. Phys. Atom. Nucl. 59 (1996) 2130.
[4] Z. Halabuka, T. Heim, K. Hencken, D. Trautmann and R. D. Viollier. Coulomb excitation and breakup of $\pi^{+} \pi^{-}$-atoms at high energies. Nucl. Phys. B 554 (1999) 86;
T. Heim, K. Hencken, D. Trautmann and G. Baur. Coherent and incoherent atomic scattering: formalism and application to pionium interacting with matter. J. Phys. B: At. Mol. Opt. Phys. 33 (2000) 3583;
T. Heim, K. Hencken, D. Trautmann and G. Baur. Pionium interacting with matter: magnetic terms and relativistic corrections. J. Phys. B: At. Mol. Opt. Phys. 34 (2001) 3763.
[5] C. Santamarina, M. Schumann, L. G. Afanasyev and T. Heim. A Monte Carlo calculation of the pionium break-up probability with different sets of pionium target cross sections. J. Phys. B: At. Mol. Opt. Phys. 36, 4273 (2003).
[6] M. Zhabitsky. Direct calculation of the probability of pionium ionization in the target. Phys. At. Nucl. 71 (2008) 1040; arXiv:0710.4416 [hep-ph].
[7] M. Zhabitsky. How uncertainties in the atomic potential affect DIRAC results. DIRAC-Note-2014-06 (2014) 7 p.; http://cds.cern.ch/record/1987122.
[8] G. H. Golub and C. Van Loan. Matrix computations. 3rd ed., - The Johns Hopkins University Press, 1996.
[9] E. Anderson et al.. LAPACK Users' Guide. 3rd ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999, ISBN 0-89871-447-8.

