DIRAC NOTE 2018–02 Draft February 5, 2019

A constructive way to calculate a yield of $\pi^+\pi^-$ -atoms from the Be target

M. Zhabitsky Joint Institute for Nuclear Research, Dubna, Russia

February 5, 2019

Abstract

This note describes details of a constructive approach to calculate with sufficient precision a yield of $\pi^+\pi^-$ -atoms from the Be target.

Variables and main equations are as in the paper [6].

A work mainly focuses on the way to solve an infinite system of kinetic (transport) equations, which describes dynamic of $\pi^+\pi^-$ atoms crossing the Be foil.

1 Solution A

A straightforward way to solve the system of transport equations, which contains infinite number of equations, is to take into account all quantum levels with principal quantum number $n \in [1, \ldots, n_{\text{max}}]$ and analyze the behavior of numerical solutions as a cut on n_{max} is increased. We will call this "Solution A".

We define following distinct sums of final states.

An estimation of total probability to leave a target in a bound state with the principal quantum number $n \leq n_{\text{max}}$:

$$P_{\rm dsc}(n_{\rm max}) = \sum_{n=1}^{n_{\rm max}} P_{\rm dsc}(n) = \sum_{n=1}^{n_{\rm max}} \sum_{l,m} |nlm\rangle^2.$$
 (1)

An estimation of total probability to annihilate from bound states with the principal quantum number $n \leq n_{\text{max}}$:

$$P_{\rm anh}(n_{\rm max}) = \sum_{n=1}^{n_{\rm max}} P_{\rm anh}(n) = \sum_{n=1}^{n_{\rm max}} P_{\rm anh}(|n00\rangle).$$
(2)

An estimation of total probability for an atom to got ionized from bound states with the principal quantum number $n \leq n_{\text{max}}$:

$$P_{\rm ion}(n_{\rm max}) = \sum_{n=1}^{n_{\rm max}} P_{\rm ion}(n) = \sum_{n=1}^{n_{\rm max}} \sum_{l,m} P_{\rm ion}(|nlm\rangle).$$
(3)

 $P_{\text{unrec}}(n_{\text{max}})$ is an estimation of the probability for an atom to reach a highly-excited states with $n > n_{\text{max}}$. This artificial level is an effective trap: atoms can reach it, but never leave it. This level doesn't change Solution A, it is introduced to verify unitarity of a numerical solution of the limited system of transport equations (with it system becomes complete). Probability $P_{\text{unrec}}(n_{\text{max}})$ is expected to converge to zero as we increase $n_{\text{max}} \to \infty$.

Limited systems of transport equations were numerically solved for all $n_{\max} \in [1, \ldots, 10]$. Sums of distinct final states as a function of n_{\max} are shown in Figs. 1–2. Distributions were fitted by a function $(p_0 \exp(-p_1 n_{\max}) + p_2)$ to analyze convergence of solutions as $n_{\max} \to \infty$. The most precise solution at $n_{\max} = 10$ is shown in Tab. 1.

As expected only low lying levels 1S, 2S and 3S contribute to annihilation. If one uses $n_{\text{max}} \ge 4$ then the probability of annihilation is known with absolute precision better than 10^{-4} .

Figure 1: Estimated probability of pionium to leave the Be target in a bound state P_{dsc} (left) or annihilate P_{anh} (right) as a function of n_{max} .

Figure 2: Estimated probability of pionium to got ionized P_{ion} (left) or reach highly excited bound states with $n > n_{\text{max}} P_{\text{unrec}}$ (right) as a function of n_{max} .

Table 1: Sums of distinct final states at $n_{\text{max}} = 10$ for solution A.									
$P^A_{\rm dsc}$	$P^A_{\rm anh}$	$P^A_{\rm ion}$	$P^A_{\rm unrec}$	$\left 1 - \left(P_{\rm dsc}^A + P_{\rm anh}^A + P_{\rm ion}^A + P_{\rm unrec}^A\right)\right $					
0.2150	0.7227	0.0319	0.0305	$< 7 \cdot 10^{-14}$					

If we further increase $n_{\rm max}$, we refine precision of contributions to leave a target in any bound state or got ionized, namely we try to find out how the value $(1 - P_{anh})$ is shared between P_{dsc}^A and $P_{\rm ion}^A$. The striking feature of the solution A is that the expected convergence of $P_{\rm unrec}^A(n_{\rm max})$ to zero is not obvious. As the numerical solution is sufficiently accurate (unitarity is conserved with precision better than 10^{-13} — see Tab. 1), round-off errors do not affect the result. This means that

$$\lim_{n_{\rm max}\to\infty} P^A_{\rm unrec} = P^A_{\rm unrec,\infty} = 0.028$$

is an estimation of the unitarity violation by the Solution A due to the truncation of the infinite system of kinetic equations. Term $P^A_{unrec,\infty}$ will provide an additional not yet accounted impact on aggregate sums of $P_{\rm ion}$ and $P_{\rm dsc}$.

By its construction, solution A provides only lower estimates on aggregate probabilities $P_{\rm ion}$ and $P_{\rm dsc}$.

The profile of bound state populations on the principal quantum number n, estimated by solution A at $n_{\text{max}} = 10$, is in Tab. 2. With respect to the "true" profile (Fig. 3) there is a decrease in populations $P_{\rm dsc}(n)$, which becomes larger as $n \to n_{\rm max}$. This decrease affects the profile slope on n as well.

If one takes into account all levels up to sufficiently large n_{max} (e.g. $n_{\text{max}} > 4$), solution A provides a strict range on an unknown true sum of all bound states populations

$$P_{\rm dsc}^{A}(n_{\rm max}) < P_{\rm dsc}^{\rm true} < P_{\rm dsc}^{A}(n_{\rm max}) + P_{\rm unrec}^{A}(n_{\rm max}),$$
(4)
$$0.2150 < P_{\rm dsc}^{\rm true} < 0.2454 \quad \text{at } n_{\rm max} = 10.$$

Table 2: $P_{\rm dsc}(n) = \sum_{lm} |nlm\rangle^2$ at $n_{\rm max} = 10$ for solution A.

n	1	2	3	4	5	6	7	8	9	10
$P_{\rm dsc}^A(n)$	0.1108	0.0596	0.0217	0.0099	0.0053	0.0032	0.0020	0.0013	0.0008	0.0004

Figure 3: Estimated probabilities for pionium to leave the Be target in a bound state with the particular principal number n, if $n_{\max} = 5$ is used in calculations A (dotted line). Solid line — an estimation of a "true" solution for the system of kinetic equations without cut $(n_{\max} \to \infty)$.

2 Solution B

Rather than try to solve the infinite system of transport equations directly, there is an another approach [6], called "solution B", which provides strict upper and lower bounds on aggregate probabilities $P_{\rm dsc}$ and $P_{\rm ion}$. Solution B takes into account dynamics of highly-excited states with $n > n_{\rm max}$. It replaces infinite number of bound states with $n > n_{\rm max}$ by one effective level (see [6] for details). The cross-section of ionization from this effective level is set to be less than from any bound state $n > n_{\rm max}$. The probability for an atom to be de-excited from states with $n > n_{\rm max}$ into states with $n < n_{\rm max}$ is taken into account as well.

In solution B the system of kinetic equations is constructed in the way that ionization is *underestimated* and all competitive processes including de-excitation from high n states (thus transitions to bound states with even lower ionization) are *overestimated*, therefore the solution is the *mathematical lower bound* of the probability of ionization.

As the probability of annihilation is very well known for solutions with $n_{\text{max}} \ge 4$, the sum $P_{\text{dsc}} + P_{\text{ion}} = 1 - P_{\text{anh}}$ is almost constant. This way the *lower bound* on the probability of ionization leads to the *upper bound* on the aggregate probability to leave a target in any bound state.

Limited systems of transport equations were numerically solved for all $n_{\max} \in [1, \ldots, 8]$, as the set of ionisation cross-sections is known up to n = 8 [4]. Sums of distinct final states as a function of n_{\max} are shown in Figs. 4–5. Distributions were fitted by a function $(p_0 \exp(-p_1 n_{\max}) + p_2)$ to analyze convergence of solutions as $n_{\max} \to \infty$. The most precise solution at $n_{\max} = 8$ is shown in Tab. 3.

Solution B provides the correct zero asymptotic value for the aggregate sum of high-*n* states as $n_{\text{max}} \to \infty$. Convergence of the ionisation sum $P_{\text{ion}}^B(n_{\text{max}})$ is slow, nevertheless the asymptotic value P_{ion}^B can be estimated. The asymptotic value for P_{dsc}^B is more difficult to estimate (see Fig. 7).

The profile of bound state populations on the principal quantum number n, estimated by solution B at $n_{\text{max}} = 8$, is in Tab. 4. With respect to the "true" profile (Fig. 6) there is a positive perturbation in populations $P_{\text{dsc}}(n)$, which becomes larger as $n \to n_{\text{max}}$.

If one takes into account all levels up to sufficiently large n_{\max} (e.g. $n_{\max} > 4$), a strict upper bound on an unknown true sum of all bound states populations can be calculated

$$P_{\rm dsc}^{\rm true} < P_{\rm dsc}^B(n_{\rm max}) + P_{\rm unrec}^B(n_{\rm max}), \tag{5}$$
$$P_{\rm dsc}^{\rm true} < 0.2349 \quad {\rm at} \ n_{\rm max} = 8.$$

Figure 4: Estimated probability of pionium to leave the Be target in a bound state P_{dsc} (left) or annihilate P_{anh} (right) as a function of n_{max} .

Figure 5: Estimated probability of pionium to got ionized P_{ion}^B (left) and probability P_{unrec}^B (right) as a function of n_{max} .

Table	Table 3: Sums of distinct final states at $n_{\text{max}} = 8$ for solution B.									
$P^B_{\rm dsc}$	$P^B_{\rm anh}$	$P^B_{\rm ion}$	$P^B_{\rm unrec}$	$\left 1-\left(P^B_{\rm dsc}+P^B_{\rm anh}+P^B_{\rm ion}+P^B_{\rm unrec}\right)\right $						
0.2347	0.7227	0.0423	0.0003	$< 3 \cdot 10^{-14}$						

3 Range on real population of discrete states (Solutions A and B)

Combining lower (4) and upper (5) bounds we obtain a range of possible values of $P_{\rm dsc}^{\rm true}$

$$P_{\rm dsc}^{A}(n_{\rm max}) < P_{\rm dsc}^{\rm true} < P_{\rm dsc}^{B}(n_{\rm max}) + P_{\rm unrec}^{B}(n_{\rm max}),$$
(6)
$$0.2150 < P_{\rm dsc}^{\rm true} < 0.2349.$$

Table 4: $P_{\rm dsc}(n) = \sum_{l,m} |nlm\rangle^2$ at $n_{\rm max} = 8$ for solution B.

n	1	2	3	4	5	6	7	8
$P_{\rm dsc}(n)$	0.1108	0.0597	0.0221	0.0109	0.0074	0.0068	0.0076	0.0094

Figure 6: Estimated probabilities for pionium to leave the Be target in a bound state with the particular principal number n, if $n_{\max} = 5$ is used in calculations B (dotted line). Solid line — an estimation of a "true" solution for the system of kinetic equations without cut $(n_{\max} \to \infty)$.

Figure 7: Range on real $P_{\rm dsc}$ after the Be target.

References

- [1] J. Schweizer. Decay widths and energy shifts of $\pi\pi$ and πK atoms. Phys. Lett. **B 587** (2004) 33.
- [2] St. Mrowczynski. Interaction of elementary atoms with matter. Phys. Rev. A 33 (1986) 1549.
- [3] L.G. Afanasyev and A.V. Tarasov. Passage of Atoms Formed by π^+ and π^- Mesons Through a Matter. Phys. Atom. Nucl. **59** (1996) 2130.
- [4] Z. Halabuka, T. Heim, K. Hencken, D. Trautmann and R. D. Viollier. Coulomb excitation and breakup of π⁺π⁻-atoms at high energies. Nucl. Phys. B 554 (1999) 86;
 T. Heim, K. Hencken, D. Trautmann and G. Baur. Coherent and incoherent atomic scattering: formalism and application to pionium interacting with matter. J. Phys. B: At. Mol. Opt. Phys. 33 (2000) 3583;
 T. Heim, K. Hencken, D. Trautmann and G. Baur. Pionium interacting with matter: magnetic terms and relativistic corrections. J. Phys. B: At. Mol. Opt. Phys. 34 (2001) 3763.
- [5] C. Santamarina, M. Schumann, L. G. Afanasyev and T. Heim. A Monte Carlo calculation of the pionium break-up probability with different sets of pionium target cross sections. J. Phys. B: At. Mol. Opt. Phys. 36, 4273 (2003).
- [6] M. Zhabitsky. Direct calculation of the probability of pionium ionization in the target. Phys. At. Nucl. 71 (2008) 1040; arXiv:0710.4416 [hep-ph].
- [7] M. Zhabitsky. How uncertainties in the atomic potential affect DIRAC results. DIRAC-Note-2014-06 (2014) 7 p.; http://cds.cern.ch/record/1987122.
- [8] G. H. Golub and C. Van Loan. Matrix computations. 3rd ed., The Johns Hopkins University Press, 1996.
- [9] E. Anderson *et al.*. LAPACK Users' Guide. 3rd ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999, ISBN 0-89871-447-8.