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Abstract

This note describes details of a constructive approach to calculate with sufficient precision
a yield of π+π−-atoms from the Be target.

Variables and main equations are as in the paper [6].
A work mainly focuses on the way to solve an infinite system of kinetic (transport) equations,

which describes dynamic of π+π− atoms crossing the Be foil.
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1 Solution A

A straightforward way to solve the system of transport equations, which contains infinite number
of equations, is to take into account all quantum levels with principal quantum number n ∈
[1, . . . , nmax] and analyze the behavior of numerical solutions as a cut on nmax is increased. We
will call this "Solution A".

We define following distinct sums of final states.
An estimation of total probability to leave a target in a bound state with the principal

quantum number n 6 nmax:

Pdsc(nmax) =

nmax∑
n=1

Pdsc(n) =

nmax∑
n=1

∑
l,m

|nlm〉2. (1)

An estimation of total probability to annihilate from bound states with the principal quantum
number n 6 nmax:

Panh(nmax) =

nmax∑
n=1

Panh(n) =

nmax∑
n=1

Panh(|n00〉). (2)

An estimation of total probability for an atom to got ionized from bound states with the
principal quantum number n 6 nmax:

Pion(nmax) =

nmax∑
n=1

Pion(n) =

nmax∑
n=1

∑
l,m

Pion(|nlm〉). (3)

Punrec(nmax) is an estimation of the probability for an atom to reach a highly-excited states
with n > nmax. This artificial level is an effective trap: atoms can reach it, but never leave
it. This level doesn’t change Solution A, it is introduced to verify unitarity of a numerical
solution of the limited system of transport equations (with it system becomes complete). Prob-
ability Punrec(nmax) is expected to converge to zero as we increase nmax →∞.

Limited systems of transport equations were numerically solved for all nmax ∈ [1, . . . , 10].
Sums of distinct final states as a function of nmax are shown in Figs. 1–2. Distributions were
fitted by a function (p0 exp(−p1nmax) + p2) to analyze convergence of solutions as nmax → ∞.
The most precise solution at nmax = 10 is shown in Tab. 1.

As expected only low lying levels 1S, 2S and 3S contribute to annihilation. If one uses
nmax > 4 then the probability of annihilation is known with absolute precision better than 10−4.
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Figure 1: Estimated probability of pionium to leave the Be target in a bound state Pdsc (left) or
annihilate Panh (right) as a function of nmax.
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Figure 2: Estimated probability of pionium to got ionized Pion (left) or reach highly excited
bound states with n > nmax Punrec (right) as a function of nmax.

Table 1: Sums of distinct final states at nmax = 10 for solution A.
PA

dsc PA
anh PA

ion PA
unrec

∣∣1− (PA
dsc + PA

anh + PA
ion + PA

unrec
)∣∣

0.2150 0.7227 0.0319 0.0305 < 7 · 10−14

If we further increase nmax, we refine precision of contributions to leave a target in any bound
state or got ionized, namely we try to find out how the value (1− Panh) is shared between PA

dsc
and PA

ion. The striking feature of the solution A is that the expected convergence of PA
unrec(nmax)

to zero is not obvious. As the numerical solution is sufficiently accurate (unitarity is conserved
with precision better than 10−13 — see Tab. 1), round-off errors do not affect the result. This
means that

lim
nmax→∞

PA
unrec = PA

unrec,∞ = 0.028

is an estimation of the unitarity violation by the Solution A due to the truncation of the infinite
system of kinetic equations. Term PA

unrec,∞ will provide an additional not yet accounted impact
on aggregate sums of Pion and Pdsc.

By its construction, solution A provides only lower estimates on aggregate probabilities Pion
and Pdsc.

The profile of bound state populations on the principal quantum number n, estimated by
solution A at nmax = 10, is in Tab. 2. With respect to the "true" profile (Fig. 3) there is a
decrease in populations Pdsc(n), which becomes larger as n → nmax. This decrease affects the
profile slope on n as well.

If one takes into account all levels up to sufficiently large nmax (e.g. nmax > 4), solution A
provides a strict range on an unknown true sum of all bound states populations

PA
dsc(nmax) < P true

dsc < PA
dsc(nmax) + PA

unrec(nmax), (4)

0.2150 < P true
dsc < 0.2454 at nmax = 10.

Table 2: Pdsc(n) =
∑
l,m

|nlm〉2 at nmax = 10 for solution A.

n 1 2 3 4 5 6 7 8 9 10
PA

dsc(n) 0.1108 0.0596 0.0217 0.0099 0.0053 0.0032 0.0020 0.0013 0.0008 0.0004
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Figure 3: Estimated probabilities for pionium to leave the Be target in a bound state with the
particular principal number n, if nmax = 5 is used in calculations A (dotted line). Solid line —
an estimation of a "true" solution for the system of kinetic equations without cut (nmax →∞).
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2 Solution B

Rather than try to solve the infinite system of transport equations directly, there is an another
approach [6], called "solution B", which provides strict upper and lower bounds on aggregate
probabilities Pdsc and Pion. Solution B takes into account dynamics of highly-excited states with
n > nmax. It replaces infinite number of bound states with n > nmax by one effective level
(see [6] for details). The cross-section of ionization from this effective level is set to be less than
from any bound state n > nmax. The probability for an atom to be de-excited from states with
n > nmax into states with n 6 nmax is taken into account as well.

In solution B the system of kinetic equations is constructed in the way that ionization is
underestimated and all competitive processes including de-excitation from high n states (thus
transitions to bound states with even lower ionization) are overestimated, therefore the solution
is the mathematical lower bound of the probability of ionization.

As the probability of annihilation is very well known for solutions with nmax > 4, the sum
Pdsc + Pion = 1 − Panh is almost constant. This way the lower bound on the probability of
ionization leads to the upper bound on the aggregate probability to leave a target in any bound
state.

Limited systems of transport equations were numerically solved for all nmax ∈ [1, . . . , 8], as the
set of ionisation cross-sections is known up to n = 8 [4]. Sums of distinct final states as a function
of nmax are shown in Figs. 4–5. Distributions were fitted by a function (p0 exp(−p1nmax)+p2) to
analyze convergence of solutions as nmax →∞. The most precise solution at nmax = 8 is shown
in Tab. 3.

Solution B provides the correct zero asymptotic value for the aggregate sum of high-n states as
nmax → ∞. Convergence of the ionisation sum PB

ion(nmax) is slow, nevertheless the asymptotic
value PB

ion can be estimated. The asymptotic value for PB
dsc is more difficult to estimate (see

Fig. 7).
The profile of bound state populations on the principal quantum number n, estimated by

solution B at nmax = 8, is in Tab. 4. With respect to the "true" profile (Fig. 6) there is a positive
perturbation in populations Pdsc(n), which becomes larger as n→ nmax.

If one takes into account all levels up to sufficiently large nmax (e.g. nmax > 4), a strict upper
bound on an unknown true sum of all bound states populations can be calculated

P true
dsc < PB

dsc(nmax) + PB
unrec(nmax), (5)

P true
dsc < 0.2349 at nmax = 8.
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Figure 4: Estimated probability of pionium to leave the Be target in a bound state Pdsc (left) or
annihilate Panh (right) as a function of nmax.
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Figure 5: Estimated probability of pionium to got ionized PB
ion (left) and probability PB

unrec (right)
as a function of nmax.

Table 3: Sums of distinct final states at nmax = 8 for solution B.
PB

dsc PB
anh PB

ion PB
unrec

∣∣1− (PB
dsc + PB

anh + PB
ion + PB

unrec
)∣∣

0.2347 0.7227 0.0423 0.0003 < 3 · 10−14

3 Range on real population of discrete states (Solutions A and
B)

Combining lower (4) and upper (5) bounds we obtain a range of possible values of P true
dsc

PA
dsc(nmax) < P true

dsc < PB
dsc(nmax) + PB

unrec(nmax), (6)

0.2150 < P true
dsc < 0.2349.

Table 4: Pdsc(n) =
∑
l,m

|nlm〉2 at nmax = 8 for solution B.

n 1 2 3 4 5 6 7 8
Pdsc(n) 0.1108 0.0597 0.0221 0.0109 0.0074 0.0068 0.0076 0.0094
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Figure 6: Estimated probabilities for pionium to leave the Be target in a bound state with the
particular principal number n, if nmax = 5 is used in calculations B (dotted line). Solid line —
an estimation of a "true" solution for the system of kinetic equations without cut (nmax →∞).
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Figure 7: Range on real Pdsc after the Be target.
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