Status report of the DIRAC experiment (PS 212)

L.Nemenov

SPS Committee, April 3, 2012.

DIRAC collaboration

Content

- 1. Long-lived $\pi^+\pi^-$ atoms : data taking in 2011 for their observation and data processing schedule in 2012.
- 2. Status of the run 2012 preparation for the long-lived $\pi^+\pi^-$ atom observation.
- 3. Status and schedule of data (2008-10) analysis of $K^+\pi^-$, $K^-\pi^+$ and $\pi^+\pi^-$ atoms in 2012.
- 4. Multiple-scattering measurement during 2011 run and data processing schedule.
- **5.** Published results of $\pi^+\pi^-$ atom lifetime measurement.

DIRAC setup

Modifided parts

MDC - microdrift gas chambers, SFD - scintillating fiber detector, IH – ionization hodoscope. DC - drift chambers, VH – vertical hodoscopes, HH – horizontal hodoscopes, Ch – nitrogen Cherenkov, PSh - preshower detectors, Mu - muon detectors

Extrapolation to the target

ENERGY SPLITTING MEASUREMENT

A_{2π} Energy Levels

J. Schweizer [PL B (2004)]

For Coulomb potential E depends on n only.

CONCLUSION: one parameter $(2a_0+a_2)$ allows to calculate all Δ_{ns-np} values. 6

Long-lived $\pi^+\pi^-$ atoms

The observation of $\pi\pi$ atom long-lived states opens the future possibility to measure the energy difference between *ns* and *np* states $\Delta E(ns-np)$ and the value of $\pi\pi$ scattering lengths $|2a_0+a_2|$.

If a resonance method can be applied for the $\Delta E(ns-np)$ measurement, then the precision of $\pi\pi$ scattering length measurement can be improved by one order of magnitude relative to the precision of other methods.

Method to observe long-lived $A_{2\pi}$ by means of a breakup foil of Platinum

Production of $A_{2\pi}$ in Beryllium target

Distribution over $|Q_L|$ of $\pi^+\pi^-$ pairs collected in 2010 (left) and in 2011 (right) with Beryllium target with the cut $Q_T < 1$ MeV/c. Experimental data (points with error bars) have been fitted by a sum of the simulated distribution of "Coulomb" and "non-Coulomb" pairs (dashed line).

Simulation of $\pi^+\pi^-$ pairs from Beryllium target and "atomic pairs" from Platinum foil

Distributions of reconstructed values of Q_T for non-Coulomb, Coulomb pairs and pairs from metastable atom

"Long-lived $A_{2\pi}$ " yield and quantum numbers

L. Afanasev; O. Gorchakov (DIPGEN)

Atomic pairs from "long-lived $A_{2\pi}$ " breakup in 2µm Pt.

$A_{2\pi}$ lifetime, τ , in np states

n _H	τ _H •10 ⁸ s	τ _{2π} •10 ¹¹ s	Decay length $A_{2\pi}$ in L.S. cm for γ =16.1
2 p	0.16	1.17	5.7
3р	0.54	3.94	19
4 p	1.24	9.05	44
5р	2.40	17.5	84.5
6р	4.1	29.9	144
7p		46.8 [*]	226
8 p		69.3 [*]	335

* - extrapolated values

M. Pentia

Production, annihilation and breakup of long-lived $A_{2\pi}$

Relative populations (‰) of $A_{2\pi}$ long-lived states at the Be target exit as a function of principal quantum number n and orbital momentum I

1 ⁿ	2	3	4	5	6	7	8
1	417	148	48	18	7	3	1
2	0	117	49	20	9	4	1
3	0	0	45	21	10	4	2
4	0	0	0	20	10	5	2
5	0	0	0	0	10	5	2
6	0	0	0	0	0	4	2
7	0	0	0	0	0	0	2

Breakup probability of $A_{2\pi}$ in np states for different thicknesses of Platinum foils ($A_{2\pi}$ momentum $P_A = 4.5 \text{ GeV}/c$ and $A_{2\pi}$ ground-state lifetime $\tau = 3 \times 10^{-15} \text{ s}$)

Thickness (µm)	2р	Зр	4р	5р	6р	7р
0.1	0.0251	0.0520	0.0858	0.1327	0.2035	0.3219
0.2	0.0559	0.1175	0.1978	0.3001	0.4185	0.5392
0.5	0.1784	0.3595	0.5537	0.7176	0.8323	0.9043
1.0	0.4147	0.6895	0.8553	0.9324	0.9667	0.9828
1.5	0.6084	0.8526	0.9446	0.9765	0.9889	0.9944
2.0	0.7422	0.9244	0.9743	0.9895	0.9951	0.9975
3.0	0.8844	0.9739	0.9918	0.9967	0.9985	0.9992

Simulation of the permanent magnets influence

Simulated "atomic pairs" from long-lived atoms (light area) over Q_Y above the background of $\pi^+\pi^-$ pairs produced in Beryllium target with cuts $|Q_X| < 1$ MeV/c, $|Q_L| < 1$ MeV/c (hatched area). In left side without the magnet and in right side with magnet used in 2011

Simulated distribution of $\pi^+\pi^-$ pairs over Q_Y produced in Beryllium target with cuts $|Q_X| < 1 \text{ MeV/c}, |Q_L| < 1 \text{ MeV/c}.$ The events without magnet (solid line) are distributed around 0 and events with the new magnet are shifted by 15 MeV/c (dashed line)

Simulation of extraction the long-lived $A_{2\pi}$ signal

Simulated distribution of $\pi^+\pi^-$ pairs over Q_L , with criterion $Q_T < 1$ MeV/c. "Experimental data" (points with error bars) are fitted by the sum of "atomic pairs" from long-lived states (dashed line), "Coulomb pairs" (by dotted-dashed line), "non-Coulomb pairs" (dotted line). The background sum is shown by the solid line.

Simulated distribution of $\pi^+\pi^-$ pairs over F, with criterion $Q_T < 2$ MeV/c. "Experimental data" (points with error bars) are fitted by the sum of "atomic pairs" from long-lived states (dashed line), "Coulomb pairs" (dotted-dashed line), "non-Coulomb pairs" (dotted line). The background sum is shown by the solid line.

イロト (四) (三) (三) (三) (三) (三)

Maximal estimation of particles fluxes through the permanent magnet

Maximal estimation of π , p, n, γ flux due to nuclear interaction of 24 GeV protons with the Beryllium target

Fluxs of high energy particles				
π^+ & π^-	10 ⁴ spill ⁻¹ cm ⁻²			
p	0.23 · 10 ⁴ spill ^{−1} cm ^{−2}			
n	0.23 · 10 ⁴ spill ^{−1} cm ^{−2}			
γ	10 ⁴ spill ⁻¹ cm ⁻²			
Total per run	2.5 · 10 ¹⁰ cm ^{−2}			
Neutron evaporation from the Be target				
Total per run	$3.2 \cdot 10^{12} \text{ cm}^{-2}$			

2011 experimental e^+e^- distribution over Q_Y

 e^+e^- pair distributions over Q_Y . for 4 time intervals: data set 1 — from 25/06/2011 to 01/07/2011; data set 2 — from 22/07/2011 to 31/07/2011; data set 3 — from 04/08/2011 to 09/08/2011; data set 4 — from 24/08/2011 to 28/08/2011. Changing in position of the peak at non-zero Q_Y illustrates the permanent magnet degradation.

▲□▶▲□▶▲≣▶▲≣▶ ■ のへで

Degradation of the permanent magnet in June - August 2011

The position of second peak in Q_Y distributions of e^+e^- pairs versus dates.

Plan of 2011 run data processing

- End of data preselection : June 2012
- Ntuple preparation completion : August 2012
- Atomic pair signal from "long-lived atom" ionization without magnetic field is expected on the level of about 3.5 sigma.

Magnet for 2012 run

- 2 new magnets: Sm₂Co₁₇, high resistivity against radiation, BL = 0.02 Tm, expected signal > 9 sigma.
- New retracting device allows to replace magnet fast.
- Magnet will be ready in the middle of April.
- Retracting device will be ready at the end April.

Magnetization loss of various permanent magnet because of neutron irradiations

Summary on the magnetization loss in % versus the neutron fluxes per cm² for Nd-Fe-B and Sm-Co magnets. The Nd-Fe-B magnets (red lines) have been irradiated by 65 MeV neutrons. The Sm-Co magnets (blue and green lines) have been irradiated by spallation sources with a high energy tail but a peak at low energy (1~15 MeV).

Normalized magnetization of Nd-Fe-B and Sm-Co magnets versus the reactor neutron flux.

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで

Magnetization loss of various permanent magnet because of proton irradiations

Normalized magnetization of Nd-Fe-B and Sm-Co magnets versus fluxes of the neutron produced by a high-intensity proton beam of 86 MeV. æ

200

イロト イヨト イミト イミト

Permanent dipole magnet for DIRAC Permanent magnet material: Sm2Co17

Alexey Vorozhtsov CERN TE-MSC-MNC

Magnet design

Layout of the dipole magnet (arrows indicate the direction of magnetization)

Integrated horizontal field homogeneity inside the GFR X×Y = 20 mm × 30 mm: Δ [Bxdz/ [Bx(0,0,z)dz [%]

Horizontal field distribution along z-axis at X=Y=0 mm [Bx(0,0,z)dz= 24.6×10⁻³ [T×m]

Mechanical structure

Permanent magnet with retractable device

BLUE ... magnet yoke

GREY ... magnet poles

RED ... magnet shimming

PURPLE ... Pt foil

I Status of π^+K^- -atoms

A. Benelli, V. Yazkov

Run 2008-2010, statistics with low and medium background ($^{2}/_{3}$ of all statistics). Point-like production of all particles. The e⁺e⁻ background was not subtracted.

Q – relative momentum in the πK c.m.s.

II Status of π^-K^+ -atoms

A. Benelli, V. Yazkov

Run 2008-2010, statistics with low and medium background ($^{2}/_{3}$ of all statistics). Point-like production of all particles. The e⁺e⁻ background was not subtracted.

> Q – relative momentum in the πK c.m.s.

III. The status of π^-K^+ and π^+K^- atoms

A. Benelli, V. Yazkov

Run 2008-2010, statistics with low and medium background ($\frac{2}{3}$ of all statistics). Point-like production of all particles. The e⁺e⁻ background was not subtracted.

> Q – relative momentum in the πK c.m.s.

IV Status $\pi^+\pi^-$ -atoms

Run 2008-2010, statistics with low and medium background ($\frac{2}{3}$ of all statistics). Point-like production of all particles. The e⁺e⁻ background was not subtracted.

Amplitude distributions for one slab of preshower detector for pions (upper) and electrons (lower). Red line presents criterion for electrons.

Amplitude distributions for one slab of right arm of preshower (X-projection) versus amplitude in left arm (Y-projection). Red line presents criterion for e+e- pairs.

Transverse momentum distributions for e+e- (upper) and pi+pi- (lower). All events are in black, events after amplitude criterion are in red and events after subtraction of weighted electron-like pairs are in magenta.

Coordinated difference at X-plane of ScFi detector distributions for e+e-(upper) and pi+pi- (lower). All events are in black, events after amplitude criterion are in red and events after subtraction of weighted electron-like pairs are in magenta.

$\pi^+\pi^-$ data

Statistics for measurement of $|a_0-a_2|$ scattering length difference and expected precision

Year	n _A	$\delta_{\text{stat}}(\%)$	$\Delta_{\rm syst}$	$\delta_{\rm syst}$ (%) MS	δ_{tot} (%)
			(%)		
2001-2003	21000	3.1	3.0	2.5	4.3
2008-2010 *	24000	3.0	3.0	2.5	4.3
2001-2003	45000	2.1	3.0	2.5	3.7
2008-2010			(2.1)	(1.25)	(3.0)

* There is 40% of data with a higher background whose implication is under investigation.

Plan of data analysis of πK and $\pi \pi$ atoms in 2012

- Run 2008 data analysis without and with e+ebackground subtraction: May 2012
- Runs 2008, 2009 and 2010 data analysis (all data) without and with e+e- background subtraction: June 2012.
- Run 2008, 2009 and 2010 data analysis, taking into account non-pointlike π- and K- mesons production: October 2012.

DIRAC data	$m{ au_{1s}} \ (10^{-15} { m s})$ value stat syst theo* tot	$ a_0 - a_2 $ value stat syst theo* tot	Reference
2001	$2.91 \begin{array}{c} +0.45 \\ -0.38 \\ -0.49 \end{array} \begin{array}{c} +0.49 \\ -0.62 \end{array} \right]$	$0.264 \begin{array}{c} +0.017 \\ -0.020 \\ -0.020 \end{array} \begin{array}{c} +0.022 \\ -0.020 \end{array} \begin{array}{c} +0.033 \\ -0.020 \end{array}$	PL B 619 (2005) 50
2001-03	$3.15 \begin{array}{c} +0.20 \\ -0.19 \\ -0.18 \end{array} \begin{bmatrix} +0.28 \\ -0.26 \end{bmatrix}$	$0.2533^{+0.0078}_{-0.0080}{}^{+0.0072}_{-0.0077} \left[\begin{smallmatrix} +0.0106 \\ -0.0111 \end{smallmatrix} \right]$	PL B 704 (2011) 24

* theoretical uncertainty included in systematic error

NA48	K-decay	$a_0 - a_2$					Reference	
		value	stat	syst	theo	tot		
2009	Κ _{3π}	0.2571	± 0.0048	± 0.0029	0.0088		EPJ C64 (2009) 589	
2010	K _{e4} & K _{3π}	0.2639	± 0.0020	± 0.0015			EPJ C70 (2010) 635	

DIRAC prospect at CERN SPS

Yield of dimeson atoms per one proton-Ni interaction, detectable by DIRAC upgrade setup at ⊖ _L =5.7º								
		24 GeV			450 GeV			
Ep	$A_{2\pi}$	$\mathbf{A}_{K}+\pi^{-}$	$A_{\pi}+K^{-}$	$A_{2\pi}$	$A_{K}+\pi^{-}$	$A_{\pi}+K^{-}$		
W _A	1.1-10 ⁻⁹	0.52-10 ⁻¹⁰	0.29-10 ⁻¹⁰	0.13·10 ⁻⁷	0.10·10 ⁻⁸	0.71-10 ⁻⁹		
W _A N	1.	1.	1.	12.	19.	24.		
w _A /w _π	3.4·10 ⁻⁸	1610 ⁻¹⁰	9.·10 ⁻¹⁰	1.3-10 ⁻⁷	110 ⁻⁸	7.1.10 ⁻⁹		
W _A ^N /W _π ^N	1.	1.	1.	3.8	6.2	8.		
			A multiplier due to different spill duration ~4					
Total gain	1.	1.	1.	15.	25.	32.		

Thank you for your attention

Values for energy shifts and lifetimes of $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ atom

[J. Schweizer, PL B587 (2004) 33]

J. Schacher

(<i>n</i> , <i>l</i>)	$\Delta E^{em}_{_{nl}}[eV]$	$\Delta E_{_{n\prime}}^{_{vac}}[eV]$	$\Delta E_{_{nl}}^{str} [eV]^{*)}$	$\tau_{nl} \left[10^{-15} s \right]$
(1,0)	-0.065	-0.942	-3.8 ± 0.1	2.9 ± 0.1
(2,0)	-0.012	-0.111	-0.47 ± 0.01	23.3 ± 0.7
(2,1)	-0.004	-0.004	$\approx -1 \Box 10^{-6}$	$\approx 1.2 \Box 10^4$

$$\Delta E_{2s-2p} = \Delta E_{20}^{str} + \Delta E_{20}^{em} - \Delta E_{21}^{em} + \Delta E_{20}^{vac} - \Delta E_{21}^{vac} = -0.59 \pm 0.01 eV$$

$$\begin{cases} \langle nlm | V_{op} | n'l'm' \rangle \neq 0 \implies \text{Stark mixing} \\ \rightarrow \text{ selection rules} : \Delta n = 0, \Delta l = \pm 1, \Delta m = 0 \end{cases}$$

Observation of long-lived $\pi^+\pi^-$ atoms

...opens future possibility to measure the energy splitting $\Delta E(ns-np)$.

$$A_{2\pi} \text{ decay dominated by the annihilation process:} \longrightarrow \pi^+ + \pi^- \rightarrow \pi^0 + \pi^0$$

$$A_{2\pi} \text{ lifetime depends on the } \pi\pi$$
scattering length difference $|a_0 - a_2|$ $\longrightarrow \frac{1}{\tau} \approx W_{\pi^0 \pi^0} = R |a_0 - a_2|^2$
Energy shift contributions $\longrightarrow \Delta E_{nl} = \Delta E_{nl}^{em} + \Delta E_{nl}^{vac} + \Delta E_{nl}^{str}$
Strong interaction contribution $\longrightarrow \Delta E_{n0}^{str} = A_n (2a_0 + a_2)$

 $\Delta E^{2s-2p} = \Delta E_{20}^{str} + \Delta E_{20}^{em} - \Delta E_{21}^{em} + \Delta E_{20}^{vac} - \Delta E_{21}^{vac} = -0.59 \pm 0.01 eV$

Simulation of long-lived $A_{2\pi}$ observation

Main parameters

Magnet Type	Permanent Magnet Dipole			
Quantity	1+1(spare)			
Magnet Height Width Length	170 mm 130 mm 66 mm			
Magnet mass	8.6 kg			
Full horizontal aperture	60 mm			
Good Field Region(GFR) Horizontal Vertical	20 mm 30 mm			
Magnetic field charact	teristics			
Nominal integrated horizontal field $\int B_{x(0,0,Z)} dz$	24.6 10 ⁻³ T m			
Horizontal field in magnet center $B_{x(0,0,0)}$	0.255 T			
Magnetic length $\int B_{x(0,0,Z)} dz / B_{x(0,0,0)}$	96.5 mm			
Integrated field homogeneity inside GFR $\Delta \int B_x dz / \int B_{x(0,0,Z)} dz$	< 2%			
Components				
Permanent magnet blocks	Sm2Co17, "Recoma 30S" or equivalent			
Pole and Return Yoke	Low carbon steel: AISI 1010			
Central inserts	Stainless steel: 316L+N			
Cover plates	Aluminum: EN-AW-6082			

Resonant method

Resonant enhancement

Coulomb pairs and atoms

The production yield strongly increases for smaller Q

Method of $A_{2\pi}$ observation and measurement

$A_{2\pi}$ level scheme and 2s – 2p energy splitting

$$\rightarrow \underline{\varepsilon}_{nl} \equiv \Delta E_{nl} = \sum_{i} \Delta E_{nl}^{i} : \varepsilon_{1s} = -4.807 eV; \ \varepsilon_{2s} = -0.593 eV; \ \varepsilon_{2p} = -0.008 eV$$
$$\Rightarrow \underline{\Delta E}_{2s-2p} = \varepsilon_{2s} - \varepsilon_{2p} = -0.585 eV$$
$$\begin{cases} 2s \text{ level shifted below 2p level} \\ by \approx 0.6 eV \dots & \text{"Lamb" shift} \end{cases}$$

$$\rightarrow \underline{\Gamma_n} \equiv \Gamma_n \left(\pi^0 \pi^0 \right) = \tau_n^{-1} : \tau_{1s} = 2.9 \, fs ; \tau_{2s} = 8 \cdot \tau_{1s} = 23.2 \, fs$$

Lamb shift measurement with external magnetic field

See: L. Nemenov, V. Ovsiannikov, Physics Letters B 514 (2001) 247.

Impact on atomic beam by external magnetic field B_{lab} and Lorentz factor γ

$$\left|\vec{E}\right| = \beta \gamma B_{lab} \approx \gamma B_{lab}$$

H=0.0 T ξ =1 N_A=330 ± 40 H=0.1 T ξ =1 N_A=330 (1-0.7%)

ξ	0.4	1		1.6
H=0.4 T	328	317		302
		11	15	13
H=0.6 T	325	304		279
		21	25	23
H=0.8 T	322	290		258
		32	32	32
H=1.0 T	317	276		241
		41	35	38
H=1.2 T	312	263		227
		49	36	46
H=1.4 T	307	251		215
		56	36	46
H=1.6 T	302	241		206
		61	35	48

 Δ_{2s-2p} can be measured at H = 1.4 ÷ 1.6 T with 60% precision using low level background events and with 50% precision using low level and medium level background events.

V. Brekhovskikh

Magnetic Field - 1.0 T

V. Brekhovskikh

Magnetic Field 1.0 T $\xi = 40\%$ 317.273									
	2р	Зр	4p	5p	6р	7p	8p	Σ	
n,%	0.42	0.27	0.15	0.079	0.046	0.025	0.012	1.002	
τ·10 ⁻¹¹ ,s	1.17	3.94	9.05	17.5	29.9	46.8	69.3	177.66	
L,cm	5.64	19.02	43.68	84.47	144.32	225.89	334.49	857.50	
ξ _n	0.0075	0.0254	0.0603	0.1177	0.2034	0.3231	0.4822	1.2197	
τ _{eff} ·10 ⁻¹¹ ,s	1.162	3.656	6.302	6.571	5.011	3.461	2.397	28.561	
L _{eff} ,cm	5.609	17.647	30.418	31.715	24.188	16.703	11.572	137.85	
N _a	0.0714	0.1595	0.1193	0.0701	0.0429	0.0239	0.0116	0.499	
N _a eff	0.0710	0.1557	0.1124	0.0624	0.0349	0.0171	0.0070	0.4605	
	Magnetic Field 1.0 T $\xi = 100\%$ 276.147								
	2р	Зр	4p	5p	6р	7p	8p	Σ	
n,%	0.42	0.27	0.15	0.079	0.046	0.025	0.012	1.002	
τ·10 ⁻¹¹ ,s	1.17	3.94	9.05	17.5	29.9	46.8	69.3	177.66	
L,cm	5.64	19.02	43.68	84.47	144.32	225.89	334.49	857.50	
ξn	0.0188	0.0636	0.1507	0.2943	0.5086	0.8076	1.2056	3.0492	
τ _{eff} ·10 ⁻¹¹ ,s	1.122	2.653	2.429	1.535	0.933	0.590	0.395	9.659	
L _{eff} ,cm	5.416	12.806	11.726	7.412	4.504	2.849	1.907	46.622	
N _a	0.0714	0.1595	0.1193	0.0701	0.0429	0.0239	0.0116	0.499	
N _a ^{eff}	0.0683	0.1369	0.0821	0.0335	0.0118	0.0030	0.0005	0.3362	
		Magn	etic Field 1.	$0 T \qquad \xi = 1$.60% 240.	908			
	2р	Зр	4р	5p	6р	7р	8p	Σ	
n,%	0.42	0.27	0.15	0.079	0.046	0.025	0.012	1.002	
τ·10 ⁻¹¹ ,s	1.17	3.94	9.05	17.5	29.9	46.8	69.3	177.66	
L,cm	5.64	19.02	43.68	84.47	144.32	225.89	334.49	857.50	
ξ _n	0.0301	0.1017	0.2411	0.4709	0.8137	1.2922	1.9289	4.8788	
τ _{eff} ·10 ⁻¹¹ ,s	1.055	1.757	1.135	0.634	0.372	0.233	0.155	5.339	
L _{eff} ,cm	5.092	8.483	5.476	3.059	1.793	1.122	0.747	25.774	
N _a	0.0714	0.1595	0.1193	0.0701	0.0429	0.0239	0.0116	0.499	
Na ^{eff}	0.0637	0.1079	0.0458	0.0106	0.0016	0.0001	3.87·10 ⁻⁶	0.2296	

The lifetime of $A_{2\pi}$ in electric field

L. Nemenov, V. Ovsiannikov (P. L. 2001)

$$M = \frac{3F\hbar^2}{\mu_l} \delta_{m,0} , \qquad \qquad F - \text{ strength of electric field in } A_{2\pi} \text{ c.m.s.}$$

$$F = \beta \gamma B_{L'}$$
 B_L in lab. syst.

 \rightarrow m must be 0

a - 12

$$\begin{split} \xi &= \frac{2 M}{\Omega_1} \text{ ,} & \Omega_1(n=2) = \frac{E_{2s} - E_{2p}}{\hbar} \\ \xi(2s-2p) &= \xi_0 \gamma B_L \quad \xi_0 \sim \frac{1}{E_{2s} - E_{2p}} \quad \xi_n = \frac{\xi_0}{8} n^3 \gamma B_L \\ \tau_n^{eff} &= \frac{\tau_n}{1+120\xi_n^2} \end{split}$$

CONCLUSION: the lifetimes for long-lived states can be calculated using only one parameter $\rightarrow E_{2s}-E_{2p}$.

The probability W(m=0) of $A_{2\pi}$ to have m=0 on \vec{F} will be calculated by L. Afanasev. The preliminary value is W (m=0) \approx 50%.

Annihilation of long-lived $A_{2\pi}$

Lifetimes τ from np states and their lab decay lengths λ in for $\gamma = 16$

	state	$ au \cdot 10^{11}$ s	λ [cm]
	2р	1.17	5.7
	Зр	3.94	19
	4p	9.05	44
	5р	17.5	84.5
	6р	29.9	144
	7р	46.8	226
	8p	69.3	335

Part of atoms created in the Be target and then broken up in the Pt foil versus the distance between the target and foil (L) for all metastable states with n > 1, l > 0 (Σ all), for sum of np states (Σ p) and for some individual p states. The foil thickness is 2 μ m.

・ロト・日本・日本・日本・日本・日本・日本

Simulation of $\pi^+\pi^-$ pairs from Beryllium target and "atomic pairs" from Platinum foil

Distributions of reconstructed values of Q_L for non-Coulomb, Coulomb pairs and pairs from metastable atom

500

Observation method

The $A_{2\pi}$ decay in the *p*-state is forbidden by angular momentum conservation. So the lifetime of the $A_{2\pi}$ atom in the 2*p* state ($\tau_{2p}=1.17 \cdot 10^{-11}$ s) is determined by the 2*p*-1*s* radiative transition with a subsequent annihilation in 1*s* state ($\tau_{1s}=3 \cdot 10^{-15}$ s): $\pi^+ + \pi^- \rightarrow \pi^0 + \pi^0$

The lifetime of the *np*-states is about 10^3 larger than the *ns*states, so it is possible to measure the **energy difference of these levels** by exerting an **electric field** (Stark effect) on the atom and tracking the field dependence of the decay probability.

The influence of an **magnetic field** on the $A_{2\pi}$ atom lifetime opens the possibility to measure the **splitting between 2s and 2p levels.**

For
$$p_A = 4.5 \text{ GeV/c}$$

 $(\gamma = 16.1)$

$$\begin{cases} \tau_{1s} = 2.9 \quad 10^{-15} \text{ s}, \quad \lambda_{1s} = 1.4 \quad 10^{-3} \text{ cm} \\ \tau_{2s} = 2.3 \times 10^{-14} \text{ s}, \quad \lambda_{2s} = 1.1 \times 10^{-2} \text{ cm} \\ \tau_{2p} = 1.17 \times 10^{-11} \text{ s}, \quad \lambda_{2p} = 5.7 \text{ cm}, \lambda_{3p} \approx 19 \text{ cm}, \\ \lambda_{4p} \approx 43 \text{ cm} \end{cases}$$

Shift of Q_v (June-August) e⁺e⁻ data

F. Takeutchi, V. Yazkov

