DIRAC status

21. October 2011

Leonid Nemenov

- π^+K^- and π^-K^+ -atoms
- π⁺π⁻-atoms (A_{2π})
- Run 2011
- Future magnet
- $A_{2\pi}$ level scheme, Stark effect and energy splitting measurement

I Status of π^+K^- -atoms

Runs 2008-2010, Q [MeV/c]

A. Benelli, V. Yazkov

Run 2008-2010, statistics with low and medium background ($^{2}/_{3}$ of all statistics). Point-like production of all particles. The e⁺e⁻ background was not subtracted.

Q – relative momentum in the πK c.m.s.

II Status of π^-K^+ -atoms

A. Benelli, V. Yazkov

Run 2008-2010, statistics with low and medium background ($^{2}/_{3}$ of all statistics). Point-like production of all particles. The e⁺e⁻ background was not subtracted.

> Q – relative momentum in the πK c.m.s.

III. The status of π^-K^+ and π^+K^- atoms

A. Benelli, V. Yazkov

Run 2008-2010, statistics with low and medium background ($\frac{2}{3}$ of all statistics). Point-like production of all particles. The e⁺e⁻ background was not subtracted.

> Q – relative momentum in the πK c.m.s.

IV Status $\pi^+\pi^-$ -atoms

Run 2008-2010, statistics with low and medium background ($\frac{2}{3}$ of all statistics). Point-like production of all particles. The e⁺e⁻ background was not subtracted.

Neodymium magnetic piece=70x60x5mm³: Gap=60mm; BL=0.01Tm Time of delivery to CERN: before 4 May 2011

Simulation of long-lived $A_{2\pi}$ observation

V. Yazkov

Without magnet

With magnet after Be target

Simulated distribution of $\pi^+\pi^-$ pairs over Q_Y with criteria: $|Q_X| < 1$ MeV/c, $|Q_L| < 1$ MeV/c. "Atomic pairs" from long-lived atoms (light area) above background (hatched area) produced in Beryllium target.

Coulomb peak of $\pi^+\pi^-$

Shift of Q_v (June-August) $\pi^+\pi^-$ data

Shift Coulomb peak over Q_V for experimental data sets 1-4

Q_x distribution (B_x=0)

F. Takeutchi, V. Yazkov

Shift of Q_v (June-August) e⁺e⁻ data

F. Takeutchi, V. Yazkov

Shift of Q_y (June-August) e⁺e⁻ data without central peak

F. Takeutchi, V. Yazkov

e⁺e⁻ generated on Be target before magnet

Shift of Q_y (August-September) e⁺e⁻ data without central peak

F. Takeutchi, V. Yazkov

End of August (upper) versus end of September

VI STATUS OF THE FUTURE MAGNET

The magnets cost about 17000 \$. The fabrication time is about 65 days.

By along z-axis

Y. Iwashita

Current Magnet Holder

V. Brekhovskikh

lower position

operating position

The New Magnet Holder

Y. Iwashita

lower position

VII ENERGY SPLITTING MEASUREMENT

$A_{2\pi}$ Energy Levels

J. Schweizer (P. L. 2004)

For Coulomb potential E depends on n only.

CONCLUSION: one parameter $(2a_0+a_2)$ allows to calculate all Δ_{ns-np} values. 18

Coulomb bound state and strong & electromagnetic perturbation

Remark

S-wave scattering lengths are amplitudes at threshold:

$$T(\pi^+\pi^- \to \pi^+\pi^-) \propto (2a_0 + a_2)$$

and

 $T(\pi^+\pi^- \to \pi^0\pi^0) \propto (a_0 - a_2)$

^{*)} Deser, Goldberger, Baumann, Thirring, PR 96 (1954) 774.

$A_{2\pi}$ level scheme and 2s – 2p energy splitting

$$\rightarrow \underline{\varepsilon}_{nl} \equiv \Delta E_{nl} = \sum_{i} \Delta E_{nl}^{i} : \varepsilon_{1s} = -4.807 eV; \ \varepsilon_{2s} = -0.593 eV; \ \varepsilon_{2p} = -0.008 eV$$
$$\Rightarrow \underline{\Delta E_{2s-2p}} = \varepsilon_{2s} - \varepsilon_{2p} = -0.585 eV$$
$$\begin{bmatrix} 2s \text{ level shifted below 2p level} \\ by \approx 0.6 eV \dots & \text{"Lamb" shift} \end{bmatrix}$$

$$\rightarrow \underline{\Gamma_n} \equiv \Gamma_n \left(\pi^0 \pi^0 \right) = \tau_n^{-1} : \tau_{1s} = 2.9 \, \text{fs} \; ; \; \tau_{2s} = 8 \cdot \tau_{1s} = 23.2 \, \text{fs}$$

Values for energy shifts and lifetimes of $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ atom

[J. Schweizer, PL B587 (2004) 33]

J. Schacher

(n, ℓ)	$\Delta E_{_{nl}}^{em}[eV]$	$\Delta E_{_{nl}}^{vac} [eV]$	$\Delta E_{_{nl}}^{str} [eV]^{*)}$	$ au_{nl} [10^{-15} s]$
(1,0)	-0.065	-0.942	-3.8 ± 0.1	2.9 ± 0.1
(2,0)	-0.012	-0.111	-0.47 ± 0.01	23.3 ± 0.7
(2,1)	-0.004	-0.004	$\sim -1 \times 0^{-6}$	» 1.2 x 0 ⁴

$$\Delta E_{2s-2p} = \Delta E_{20}^{str} + \Delta E_{20}^{em} - \Delta E_{21}^{em} + \Delta E_{20}^{vac} - \Delta E_{21}^{vac} = -0.59 \pm 0.01 eV$$

$$\begin{cases} \left\langle nlm | V_{op} | n'l'm' \right\rangle \neq 0 \implies \text{Stark mixing} \\ \rightarrow \text{selection rules} : \Delta n = 0, \Delta l = \pm 1, \Delta m = 0 \end{cases}$$

*)
$$\Delta E_{n_0}^{str} \sim A_n (2a_0 + a_2)$$

$A_{2\pi}$ lifetime, τ , in np states

n _H	τ _H •10 ⁸ s	$\tau_{2\pi} \bullet 10^{11} s$	Decay length
			$A_{2\pi}$ in L.S. cm
			for γ=16.1
2 p	0.16	1.17	5.7
3р	0.54	3.94	19
4p	1.24	9.05	44
5р	2.40	17.5	84.5
6р	4.1	29.9	144
7 p		46.8 [*]	226
8p		69.3 [*]	335

* - extrapolated values

M. Pentia

Long-lived $A_{2\pi}$ yield and quantum numbers

L. Afanasev; O. Gorchakov (DIPGEN)

Atomic pairs from $A_{2\pi}$ long-lived states breakup in $2\mu m$ Pt.

Lamb shift measurement with external magnetic field

See: L. Nemenov, V. Ovsiannikov, Physics Letters B 514 (2001) 247.

Impact on atomic beam by external magnetic field B_{lab} and Lorentz factor γ

$$\left|\vec{E}\right| = \beta \gamma B_{lab} \approx \gamma B_{lab}$$

The lifetime of $A_{2\pi}$ in electric field

L. Nemenov, V. Ovsiannikov [PL B514 (2001) 247]

 $M = \frac{3\kappa\hbar^2}{e\mu} F \delta_{m,0} , \quad \kappa = 4\pi\varepsilon_0 , \quad F ... \text{ strength of electric field in } A_{2\pi} \text{ c.m.s.}$

 $F=\beta\gamma B_{L'} \quad \mathsf{B}_{\mathsf{L}}\!\equiv\mathsf{B}_{\mathsf{lab}} \text{ in lab system}$

 \rightarrow m must be 0

$$\begin{split} \xi &= \frac{2 M}{\Omega_1} , \qquad \qquad \Omega_1 (n=2) = \frac{E_{2s} - E_{2p}}{\hbar} \\ \xi (2s-2p) &= \xi_0 \gamma B_L \qquad \xi_0 \sim \frac{1}{E_{2s} - E_{2p}} \qquad \qquad \xi_n = \frac{\xi_0}{8} n^3 \gamma B_L \\ \tau_n^{eff} &= \frac{\tau_n}{1+120\xi_n^2} \end{split}$$

CONCLUSION: the lifetimes for long-lived states can be calculated using only one parameter $\rightarrow E_{2s}-E_{2p}$.

The probability W(m=0) of $A_{2\pi}$ to have m=0 on \vec{F} will be calculated by L. Afanasev. The preliminary value is W (m=0) \approx 50%.

$A_{2\pi}^{*}$ (2p-state) lifetime versus electric field

J. Schacher

Atom-field interaction:

$$M(\vec{E}) = \left\langle 2pm \left| V_{op} \right| 2s \right\rangle = -d_e^{n=2} \left| \vec{E} \right| = -3 \frac{\kappa \hbar^2}{e\mu_r} \left| \vec{E} \right| \delta_{m0}$$

with $V_{op} = e \left| \vec{E} \right| z$, $d_e^{n=2} = 3 e a_{Bohr}$... electric dipole (n = 2), μ_r ... reduced mass, $\kappa = 4\pi\varepsilon_0$ $\left| \vec{E} \right| = \beta \gamma B_{lab}$... electric field in $A_{2\pi}$ – system $\left\| z - axis \right\|$

$$\vec{B}_{lab} = 0: \quad \Psi_{2pm}(\vec{r}, t) = a_{2pm}\phi_{2pm}(\vec{r})e^{-iE_{2p}t/\hbar} \qquad \Rightarrow \qquad P_{B=0}(t) = \exp(-t/\tau_{2p})$$

$$\vec{B}_{lab} \neq 0: \quad \Psi_{2p0}(\vec{r},t) = \widetilde{a}_{2p0}(t) \phi_{2p0}(\vec{r}) e^{-iE_{2p}t/\hbar} \dots \text{ will change } \Rightarrow P(t)|_{m=0} \approx \exp\left(-t/\tau_{2p}^{eff}\right): \text{ [weak-field limit]}$$

$$\tau_{2p}^{eff} = \tau_{2p} \left[1 + 0.25 \left| \xi \left(\left| \vec{E} \right|, \Delta E_{2s-2p} \right) \right|^2 \left(\frac{\tau_{2p}}{\tau_{2s}} - 1 \right) \right]^{-1} \quad \text{and} \quad \left| \xi \left(\dots \right) \right|^2 \propto \frac{\left| \vec{E} \right|^2}{\left(\Delta E_{2s-2p} \right)^2}$$

Using
$$\vec{B}_{lab} \to \vec{E}$$
, measure $\tau_{2p}^{eff} \Rightarrow |\xi(...)|^2 \Rightarrow \Delta E_{2s-2p} \Rightarrow 2a_0 + a_2$

H=0.0 T ξ =1 N_A=330 ± 40 H=0.1 T ξ =1 N_A=330 (1-0.7%)

ξ	0.4	1		1.6	
H=0.4 T	328	317		302	
		11	15	13	
H=0.6 T	325	304		279	
		21	25	23	
H=0.8 T	322	290		258	
		32	32	32	
H=1.0 T	317	276		241	
	4	41	35	38	
H=1.2 T	312	263		227	
	4	49	36	46	
H=1.4 T	307	251		215	
	ļ	56	36	46	
H=1.6 T	302	241		206	
	(51	35	48	

 Δ_{2s-2p} can be measured at H = 1.4 ÷ 1.6 T with 60% precision using low level background events and with 50% precision using low level and medium level background events.

V. Brekhovskikh

Magnetic Field - 1.0 T

V. Brekhovskikh

Magnetic Field 1.0 T $\xi = 40\%$ 317.273								
	2р	3р	4p	5p	6р	7p	8p	Σ
n,%	0.42	0.27	0.15	0.079	0.046	0.025	0.012	1.002
τ·10 ⁻¹¹ ,s	1.17	3.94	9.05	17.5	29.9	46.8	69.3	177.66
L,cm	5.64	19.02	43.68	84.47	144.32	225.89	334.49	857.50
ξn	0.0075	0.0254	0.0603	0.1177	0.2034	0.3231	0.4822	1.2197
τ _{eff} ·10 ⁻¹¹ ,s	1.162	3.656	6.302	6.571	5.011	3.461	2.397	28.561
L _{eff} ,cm	5.609	17.647	30.418	31.715	24.188	16.703	11.572	137.85
N _a	0.0714	0.1595	0.1193	0.0701	0.0429	0.0239	0.0116	0.499
N _a eff	0.0710	0.1557	0.1124	0.0624	0.0349	0.0171	0.0070	0.4605
		Magn	etic Field 1.	$0 T \qquad \xi = 1$	00% 276.	147		
	2р	Зр	4p	5p	6р	7p	8p	Σ
n,%	0.42	0.27	0.15	0.079	0.046	0.025	0.012	1.002
τ·10 ⁻¹¹ ,s	1.17	3.94	9.05	17.5	29.9	46.8	69.3	177.66
L,cm	5.64	19.02	43.68	84.47	144.32	225.89	334.49	857.50
ξn	0.0188	0.0636	0.1507	0.2943	0.5086	0.8076	1.2056	3.0492
τ _{eff} ·10 ⁻¹¹ ,s	1.122	2.653	2.429	1.535	0.933	0.590	0.395	9.659
L _{eff} ,cm	5.416	12.806	11.726	7.412	4.504	2.849	1.907	46.622
N _a	0.0714	0.1595	0.1193	0.0701	0.0429	0.0239	0.0116	0.499
N_a^{eff}	0.0683	0.1369	0.0821	0.0335	0.0118	0.0030	0.0005	0.3362
Magnetic Field 1.0 T $\xi = 160\%$ 240.908								
	2p	Зр	4p	5p	6р	7p	8p	Σ
n,%	0.42	0.27	0.15	0.079	0.046	0.025	0.012	1.002
τ·10 ⁻¹¹ ,s	1.17	3.94	9.05	17.5	29.9	46.8	69.3	177.66
L,cm	5.64	19.02	43.68	84.47	144.32	225.89	334.49	857.50
ξn	0.0301	0.1017	0.2411	0.4709	0.8137	1.2922	1.9289	4.8788
τ _{eff} •10 ⁻¹¹ ,s	1.055	1.757	1.135	0.634	0.372	0.233	0.155	5.339
L _{eff} ,cm	5.092	8.483	5.476	3.059	1.793	1.122	0.747	25.774
N _a	0.0714	0.1595	0.1193	0.0701	0.0429	0.0239	0.0116	0.499
Naeff	0.0637	0.1079	0.0458	0.0106	0.0016	0.0001	3.87·10 ⁻⁶	0.2296

<u>Reserve:</u>

External magnetic and electric fields

Atoms in a beam are influenced by external magnetic field and the relativistic Lorentz factor.

- \vec{r} relative distance between π^+ and π^- in $A_{2\pi}$ atom
- \vec{B} laboratory magnetic field
- \vec{F} electric field in the c.m.s. of $A_{2\pi}$ atom

$$\mathbf{F} = \boldsymbol{\beta} \boldsymbol{\gamma} \mathbf{B}_{\mathrm{L}} \approx \boldsymbol{\gamma} \mathbf{B}_{\mathrm{L}}$$

The lifetime of $A_{2\pi}$ in electric field

L. Nemenov, V. Ovsiannikov (P. L. 2001)

 $M = \frac{3F\hbar^2}{\mu_l} \, \delta_{m,0} \; , \qquad \qquad \mbox{F-strength of electric field in $A_{2\pi}$ c.m.s.} \label{eq:mass_strength}$

$$\mathbf{F} = \boldsymbol{\beta} \boldsymbol{\gamma} \mathbf{B}_{L}$$
, \mathbf{B}_{L} in lab. syst.

 \rightarrow m must be 0

$$\begin{split} \xi &= \frac{2 M}{\Omega_1} , \qquad \qquad \Omega_1(n=2) = \frac{E_{2s} - E_{2p}}{\hbar} \\ \xi(2s-2p) &= \xi_0 \gamma B_L \qquad \xi_0 \sim \frac{1}{E_{2s} - E_{2p}} \qquad \qquad \xi_n = \frac{\xi_0}{8} n^3 \gamma B_L \\ \tau_n^{eff} &= \frac{\tau_n}{1+120\xi_n^2} \end{split}$$

CONCLUSION: the lifetimes for long-lived states can be calculated using only one parameter $\rightarrow E_{2s}-E_{2p}$.

The probability W(m=0) of $A_{2\pi}$ to have m=0 on \vec{F} will be calculated by L. Afanasev. The preliminary value is W (m=0) \approx 50%.