

SPSC – October 2019 L. Nemenov on behalf of the DIRAC Collaboration

Content

- 1. Long-lived $\pi^+\pi^-$ atoms
- 2. K⁺K⁻ pair investigation near threshold
- 3. Short-lived $\pi^+\pi^-$ atom lifetime measurement
- 4. Proton-antiproton pair analysis
- 5. High precision investigation of multiple scattering in Be, Ti, Ni and Pt

DIRAC setup, experimental and theoretical data

Lifetime of long-lived $\pi^+\pi^-$ atoms

The lifetime of the long-lived atom in 2p state is:

- $\tau_{2p} = 0.45^{+1.08}_{-0.30} |_{tot} 10^{-11} s$
- QED: $\tau_{2p} = 1.17 \times 10^{-11}$ s

The measured ground state lifetime is: $\tau_{1s} = 3.15^{+0.28}_{-0.26}$ tot $\times 10^{-15}$ s

 $\tau_{2p} = 0.60^{+1.34}_{-0.30} \Big|_{\rm tot} 10^{-11} {\rm s}$

One-third of the long-lived atoms have a lab. decay length of 40 - 140cm. It opens the possibility to measure the Lamb shift and $\pi\pi$ scattering lengths. The experimental results were published : Phys.Rev.Lett., 122, 082003(2019)

K⁺K⁻ pair analysis

z

K⁺K⁻ pair analysis

 K^+K^- Coulomb pairs signal

Distribution of K^+K^- pairs in the RUN 2009 + 2010 over the full pair momentum in laboratory system.

Experimental data

Experimental distributions 2009, 2010 years evaluated with different (30%, 50%, 70%) cuts on the Time of Flight spectra for K^+K^- separation and $\pi^+\pi^-$, $p\bar{p}$ background suppression (with Q_T cuts on the trigger only)

2009	Experimental data				Correction ratios		
Sample	all	30%	50%	70%	30%/all	50%/all	70%/all
$\pi^+\pi^-$	7.77E+06	17290	3540	620	0.22%	0.05%	0.008%
K^+K^-	90840	25660	15040	8210	28.2%	16.6%	9.0%
$par{p}$	7670	2960	1930	880	38.6%	25.2%	11.5%

2010	Experimental data				С	orrection rati	08
Sample	all	30%	50%	70%	30%/all	50%/all	70%/all
$\pi^+\pi^-$	7.96E+06	15230	2970	80	0.19%	0.04%	0.001%
K^+K^-	92960	25550	15910	8330	27.5%	17.1%	9.0%
$par{p}$	7200	2950	1780	770	41.0%	24.7%	10.7%

Experimental data

Experimental distributions 2009, 2010 years evaluated with different (30%, 50%, 70%) cuts on the Time of Flight spectra for K^+K^- separation and $\pi^+\pi^-$, $p\bar{p}$ background suppression (with $Q_T < 8$ MeV/c)

2009	Experimental data				С	orrection rati	08
Sample	all	30%	50%	70%	30%/all	50%/all	70%/all
$\pi^+\pi^-$	4.59E+06	9970	2030	380	0.22%	0.04%	0.008%
K^+K^-	50500	14470	8350	4510	28.7%	16.5%	8.9%
$par{p}$	3730	1520	990	450	40.8%	26.5%	12.1%

2010	Experimental data				С	orrection rati	08
Sample	all	30%	50%	70%	30%/all	50%/all	70%/all
$\pi^+\pi^-$	4.69E+06	8590	1660	90	0.18%	0.04%	0.002%
K^+K^-	50200	14140	8750	4510	28.2%	17.4%	9.0%
$par{p}$	3180	1470	880	390	46.2%	27.7%	12.3%

Experimental Q_L distributions 2009 + 2010

The experimental distributions fitted in the interval $0 < Q_L < 100 \text{MeV/c}$ by simulated distributions of $K^+K^$ pairs (red line) and $\pi^+\pi^-$ pairs (green line). The black line is the sum of K^+K^- and $\pi^+\pi^-$ pairs.

K^+K^- and $\pi^+\pi^-$ experimental Q_L distribution 2009 and 2010 data

Analysis of the 2009, 2010 years experimental Q_L distributions evaluated by different (30%, 50%, 70%) cuts on the Time of Flight pair spectra . The Q_L spectra fitted in $0 < Q_L < 100 \text{ MeV/c}$ interval by the simulated distributions of K^+K^- and $\pi^+\pi^-$ pairs.

year	cut on ToF	total events	$(K^+K^-) \pm \sigma_{K^+K^-}$	$(\pi^+\pi^-)\pm\sigma_{\pi^+\pi^-}$	χ^2/DF
	70%	1870	1820 ± 240	-40 ± 230	1.016
2009	50%	3340	2260 ± 360	990 ± 370	0.931
	30%	6080	3970 ± 660	2040 ± 680	0.770
	70%	1920	1460 ± 210	370 ± 210	1.016
2010	50%	3080	2320 ± 360	700 ± 360	0.931
	30%	4960	4740 ± 630	180 ± 650	0.770
2009	70%	3790	3280 ± 320	330 ± 310	
+ 2010	50%	6420	4580 ± 510	1690 ± 510	
	30%	11050	8720 ± 910	2220 ± 940	

K^+K^- and $\pi^+\pi^-$ experimental Q distribution 2009 and 2010 data

Analysis of the 2009, 2010 years experimental Q distributions evaluated by different (30%, 50%, 70%) cuts on the Time of Flight pair spectra . The Q spectra fitted in 0 < Q < 100 MeV/c interval by the simulated distributions of K^+K^- and $\pi^+\pi^-$ pairs.

year	cut on ToF	total events	$(K^+K^-) \pm \sigma_{K^+K^-}$	$(\pi^+\pi^-)\pm\sigma_{\pi^+\pi^-}$	χ^2/DF
	70%	1870	1840 ± 240	-70 ± 240	1.180
2009	50%	3340	2310 ± 380	950 ± 380	1.129
	30%	6070	4150 ± 680	1860 ± 710	0.928
	70%	1920	1620 ± 220	220 ± 220	0.962
2010	50%	3080	2470 ± 370	550 ± 370	0.790
	30%	4960	4910 ± 650	0 ± 670	0.688
2009	70%	3790	3460 ± 330	150 ± 320	
+ 2010	50%	6420	4780 ± 530	1490 ± 530	
	30%	11030	9060 ± 940	1860 ± 980	

K^+K^- and $\pi^+\pi^-$ experimental Q distribution 2009 and 2010 data

Analysis of the 2009, 2010 years experimental Q distributions evaluated by different (30%, 50%, 70%) cuts on the Time of Flight pair spectra . The Q spectra fitted in 0 < Q < 30 MeV/c interval by the simulated distributions of K^+K^- and $\pi^+\pi^-$ pairs.

year	cut on ToF	total events	$(K^+K^-) \pm \sigma_{K^+K^-}$	$(\pi^+\pi^-)\pm\sigma_{\pi^+\pi^-}$	χ^2/DF
	70%	1870	1880 ± 290	-140 ± 330	1.324
2009	50%	3340	2300 ± 450	930 ± 540	1.124
	30%	6070	4830 ± 830	780 ± 1030	1.124
	70%	1920	1560 ± 260	280 ± 290	1.067
2010	50%	3080	2420 ± 440	620 ± 530	0.504
	30%	4960	4640 ± 780	410 ± 960	0.831
2009 + 2010	70%	3790	3440 ± 380	140 ± 440	
	50%	6420	4720 ± 630	1550 ± 760	
	30%	11030	9470 ± 1140	1190 ± 1410	

Experimental Q distributions 2009 + 2010

The experimental distributions fitted in the interval 0 < Q < 100 MeV/cby simulated distributions of $K^+K^$ pairs (red line) and $\pi^+\pi^-$ pairs (green line). The black line is the sum of K^+K^- and $\pi^+\pi^-$ pairs.

Similarities of the Q and Q_L distribution analysis

Year	cut on ToF	total events	$(K^+K^-) \pm \sigma_{K^+K^-}$	$(\pi^+\pi^-)\pm\sigma_{\pi^+\pi^-}$
700/		Q	3460 ± 330	150 ± 320
/0%	/070	Q_L	3280 ± 320	330 ± 310
2009	500/	Q	4780 ± 530	1490 ± 530
2010	30%	Q_L	4580 ± 510	1690 ± 510
	30%	Q	9060 ± 940	1860 ± 980
		Q_L	8720 ± 910	2220 ± 940

Experimental Q distributions 2009 + 2010 K⁺K⁻ data

The experimental distributions fitted by simulated distributions of K^+K^- pairs (red line). The simulated distributions are normalized to the experimental one in the interval 50 < Q < 100 MeV/c

Ratio experimental/simulated 2009 + 2010 K⁺K⁻ data

The fitted *Q* spectra in 0 < Q < 100 MeV/c interval without subtraction of $\pi^+\pi^-$ background

KK Coulomb pairs and KK atoms

For charged pairs from short-lived sources and with small relative momenta Q, Coulomb final state interaction has to be taken into account. This interaction increases the production yield of the free pairs with Q decreasing and creates atoms.

Coulomb pair

Atom

There is a precise ratio between the number of produced Coulomb pairs (N_C) with small Q and the number of atoms (N_A) produced simultaneously with Coulomb pairs:

$$N_{A} = K(Q_{0})N_{C}(Q \leq Q_{0}), \frac{\delta K(Q_{0})}{K(Q_{0})} \leq 10^{-2}$$

$$n_A$$
 - atomic pairsnumber, $P_{br} = \frac{n_A}{N_A}$

K⁺*K*⁻*atom and its lifetime*

Properties of the K⁺K⁻ atom (kaonium or A_{2K}) [1]:

The A_{2K} lifetime is strongly reduced by strong interaction (OBE, scalar f_0 and a_0) as compared to the annihilation of a purely Coulomb-bound system (K⁺K⁻).

	τ ($A_{2K} \rightarrow \pi\pi, \pi\eta$)	K ⁺ K [−] interaction
Ξ.	1.2×10 ⁻¹⁶ s [2]	Coulomb-bound
actio	8.5×10 ⁻¹⁸ s [3]	momentum dependent potential
K ⁺ K ⁻ intera complex	3.2×10 ⁻¹⁸ s [2]	+ one-boson exchange (OBE)
	1.1×10 ⁻¹⁸ s [2]	+ f ₀ ' (I=0) + πη-channel (I=1)
	2.2×10 ⁻¹⁸ s [4]	ChPT

References: [1] S. Wycech, A.M. Green, NPA562 (1993) 446;

[2] S. Krewald, R. Lemmer, F.P. Sasson, PRD69 (2004) 016003;

[3] Y-J Zhang, H-C Chiang, P-N Shen, B-S Zou, PRD74 (2006) 014013;

[4] S.P. Klevansky, R.H. Lemmer, PLB702 (2011) 235.

Total number of K⁺K⁻ atoms

The number of K^+K^- pairs evaluated in the Q analysis

year	cut on ToF	$(K^+K^-) \pm \sigma_{K^+K^-}$	Ratio	total number of K^+K^-
	70%	1840 ± 240	$9.0\pm0.7\%$	20400 ± 3110
2009	50%	2310 ± 380	$16.6 \pm 1.4\%$	13950 ± 2540
	30%	4150 ± 680	$28.2\pm2.8\%$	14680 ± 2820
2010	70%	1620 ± 220	$9.0\pm0.7\%$	18050 ± 2830
	50%	2470 ± 370	$17.4\pm1.4\%$	14160 ± 2410
	30%	4910 ± 650	$28.2\pm2.7\%$	17440 ± 2850

The number of evaluated K^+K^- atoms

cut on ToF	$(K^+K^-) \pm \sigma_{K^+K^-}$ (Q < 4 MeV/c)	Ratio	Total N _C	$N(K^+K^- \text{ atoms})$
30%	420 ± 40	28 %	1490 ± 150	$2080\ \pm 210$
50%	230 ± 30	17 %	1330 ± 150	1860 ± 210
70%	150 ± 20	9 %	1690 ± 180	2360 ± 250

Experimental results

(scattering length in
$$m_{\pi}^{-1}$$
)

2009 NA48/2 (EPJ C64, 589)

$$\Rightarrow a_0 - a_2 = 0.2571 \pm 0.0048 \big|_{stat} \pm 0.0025 \big|_{syst} \pm 0.0014 \big|_{ext} = \dots \pm 2.2\%$$

plus additional 3.4% theory uncertainty

Ke4:

 $K \rightarrow 3\pi$

2010 NA48/2 (EPJ C70, 635)

$$\Rightarrow a_0 = 0.2220 \pm 0.0128 \big|_{stat} \pm 0.0050 \big|_{syst} \pm 0.0037 \big|_{theo} = \dots \pm 6.4\%$$
$$\Rightarrow a_2 = -0.0432 \pm 0.0086 \big|_{stat} \pm 0.0034 \big|_{syst} \pm 0.0028 \big|_{theo} = \dots \pm 22\%$$

 $\pi^+\pi^-$ atom:

2011 **DIRAC** (PLB 704, 24)

$$\Rightarrow |a_0 - a_2| = 0.2533 + 0.0078 | + 0.0072 |_{stat} + 0.0072 |_{syst} = \dots + 4.2\% - 4.4\%$$

III. The short-lived $\pi^+\pi^-$ atom lifetime measurement

Preliminary results on the shortlived atom lifetime measurement based on all available 2008-2010 data are presented in Fig. 1 and 2.

Fig.1. Distribution over $|Q_I|$ for events, selected with criterion $Q_T < 4$ MeV/c. Fractions of atomic, Coulomb and non-Coulomb pairs were obtained by fitting the distri-bution over $(|Q_L|,Q_T)$ with criteria: $|Q_L| < 15$ $MeV/c, Q_T < 4 MeV/c.$ N_A , n_A and P_{br} . are the number of produced atoms, detected atomic pairs and probability of the atoms breaking in the target respectively.

Multiple scattering evaluation

Plan for 2020

- 1. The theoretical paper about the influence of a magnetic field on long-lived np states for any n will be published in 2020.
- 2. The preprint about the K⁺K⁻ pair investigation will be submitted in the beginning of 2020.
- 3. The evaluation of the short-lived atom lifetime and $\pi\pi$ scattering lengths, based on all available data, will be finished in 2020.
- 4. The proton-antiproton pair analysis, using the same strategy as for KK, will be finished soon and the corresponding preprint be submitted in fall 2020.
- 5. The multiple scattering study will be fully accomplished.

Thank you