Creation of an intense source of $\pi\pi$, πK and other exotic atoms at SPS proton beam and using them for accurate measurements of $\pi\pi$, πK scattering length and other low energy parameters to check the precise low energy QCD predictions

VILLARS 2004 CERN SPS and PS Committee

Theoretical motivation

perturbative QCD:

 $L_{QCD}(\mathbf{q},\mathbf{g})$ interaction \rightarrow ,,weak" (asympt. freedom): expansion in coupling Check only L_{sym} chiral sym. & break: $L_{eff}(GB: \pi, K, \eta)$ interaction \rightarrow ,,strong" (confinement) - but: expansion in energy Check L_{sym} as well as $L_{break-sym} \rightarrow q$ -condensate

VILLARS 2004 CERN SPS and PS Committee

$\pi\pi$ scattering

ChPT predicts s-wave scattering lengths:

 $a_0 = 0.220 \pm 0.005(2.3\%)$ $a_2 = -0.0444 \pm 0.0010(2.3\%)$ $a_0 - a_2 = 0.265 \pm 0.004(1.5\%)$

Chiral expansion of the π mass:

$$M_{\pi}^{2} = (m_{u} + m_{d})B - [(m_{u} + m_{d})B]^{2} \frac{l_{3}}{32\pi^{2}F^{2}} + O((m_{u} + m_{d})^{3})$$

where $BF_{\pi}^{2} = |\langle 0 | \overline{u}u | 0 \rangle|$ is the *quark condensate*, reflecting a property of the *QCD vacuum*.

Measurement of $\overline{l_3} \stackrel{(1)}{\Rightarrow}$ estimate of $(m_u + m_d) |\langle 0 | \overline{u}u | 0 \rangle |$: e.g.: $a_0 - a_2 = 0.260 \pm 3\% \Rightarrow 1 < \overline{l_3} < 11$ or $1.00 < M / M_{\pi} < 1.06$

E865: $a_0 = 0.216 \pm 6\% \implies -4 < \overline{l_3} < 12 \text{ or } 0.98 < M / M_{\pi} < 1.06$

VILLARS 2004 CERN SPS and PS Committee

L. Nemenov

Experimental Status

 $K^{+} \to \pi^{+}\pi^{-}e^{+}V_{e} \ (K_{e4}) \Rightarrow \begin{cases} \text{measurement of the phase difference} \\ \delta(s) \equiv \delta_{0}^{0}(s) - \delta_{1}^{1}(s) \text{ for } 4M_{\pi}^{2} < s < M_{K}^{2} \end{cases}$ 1) $a_{0} = 0.26 \pm 0.05$, using Roy eq. Rosselet et al. CERN, 1977 2a) $a_{0} = 0.203 \pm 0.033$ $a_{2} = -0.055 \pm 0.023$ 2b) $a_{0} = 0.216 \pm 0.013 \text{ (stat)} \pm 0.002 \text{ (th)},$ using Roy eq. & $a_{2} = f_{ChPT}(a_{0})$

DIRAC after analysis of all collected data

$$\delta(a_0 - a_2) = \pm 5\%(stat) \pm 3\%(syst) \pm 2\%(theor)$$

Nemenov

VILLARS 2004 CERN SPS and PS Committee

πK scattering

I. ChPT predicts s-wave scattering lengths:

 $a_0^{1/2} = 0.19 \pm 0.2$ $a_0^{3/2} = -0.05 \pm 0.02$ $L^{(2)}, L^{(4)}$ and 1-loop

 $a_0^{1/2} - a_0^{3/2} = 0.23 \pm 0.01$

V. Bernard, N. Kaiser, U. Meissner. - 1991

A. Rossel. – 1999

J. Bijnens, P. Talaver. – April 2004

 $L^{(2)}, L^{(4)}, L^{(6)}$ and 2-loop

II. Roy-Steiner equations:

 $a_0^{1/2} - a_0^{3/2} = 0.269 \pm 0.015$

III. $A_{\pi K}$ lifetime:

$$A_{\pi^{+}K^{-}} \to \pi^{0} \overline{K}^{0} \quad (A_{K^{+}\pi^{-}} \to \pi^{0} K^{0})$$

$$\Gamma(\pi^{0} \overline{K}^{0}) \sim |a_{0}^{1/2} - a_{0}^{3/2}|^{2} \quad \text{precission} \sim 1\%$$

$$\tau = (3.7 \pm 0.4) \cdot 10^{-15} s$$

J. Schweizer. -2004

25 September 2004

VILLARS 2004 CERN SPS and PS Committee

L. Nemenov

1. $A_{2\pi}$ time of life

CERN

L. Nemenov

VILLARS 2004 CERN SPS and PS Committee

Energy Splitting between *np* - *ns* states in (π^+ - π^-) atom

$$\Delta E_n \equiv E_{ns} - E_{np}$$

$$\Delta E_n \approx \Delta E_n^{vac} + \Delta E_n^s \qquad \Delta E_n^s \sim 2a_0 + a_2$$

For n=2

 $\Delta E_2^{vac} = -0.107 \ eV \ from \ QED \ calculations$ $\Delta E_2^s \approx -0.45 \ eV \ numerical \ estimated \ value \ from \ ChPT$ $a_0 = 0.220 \pm 0.005$ $a_2 = -0.0444 \pm 0.0010$

(2001) G. Colangelo, J. Gasser and H. Leutwyler

$$\Rightarrow \Delta E_2 \approx -0.56 \text{ eV}$$

(1979) A. Karimkhodzhaev and R. Faustov(1983) G. Austen and J. de Swart(1986) G. Efimov *et al.*

L. Nemenov

(1999) A. Gashi *et al.*(2000) D. Eiras and J. Soto

A. Rusetsky, priv. comm.

VILLARS 2004 CERN SPS and PS Committee

Method of $A_{2\pi}$ Observation

 $\tau(A_{2\pi})$ too small to be measured directly

e.m. interation of $A_{2\pi}$ *in the target*

 $A_{2\pi} \rightarrow \pi^{+}\pi^{-}$ $Q < 3MeV/c \quad E_{+} \approx E_{-}$ $\Theta_{lab} < 2.5 mrad$

Coulomb from short-lived sources non- Coulomb from long-lived sources

25 September 2004

VILLARS 2004 CERN SPS and PS Committee

VILLARS 2004 CERN SPS and PS Committee

Metastable atoms

Probabilities of the $A_{2\pi}$ breakup (Br) and yields of the long-lived states for different targets provided the maximum yield of summed population of the long-lived states: $\Sigma(l \ge 1)$

Target Z	Thickness Mm	Br	$\sum_{(l \ge 1)}$	2p ₀	3p ₀	4p ₀	$\sum_{\substack{(l=1, m=0)}}$
04	100	1 15%	5 860/	1 05%	0.46%	0.15%	1 00%
04	100	4.4370	5.8070	1.0370	0.4070	0.1370	1.9070
06	50	5.00%	6.92%	1.46%	0.51%	0.16%	2.52%
13	20	5.28%	7.84%	1.75%	0.57%	0.18%	2.63%
28	5	9.42%	9.69%	2.40%	0.58%	0.18%	3.29%
78	2	18.8%	10.5%	2.70%	0.54%	0.16%	3.53%

L. Nemenov

VILLARS 2004 CERN SPS and PS Committee

Yields of the long-lived states 2p (m = 0) as a function of the A_{2 π} lifetime for Beryllium targets (Z = 04). Target thicknesses are given in microns on the right side of the picture.

VILLARS 2004 CERN SPS and PS Committee

External magnetic and electric fields

Atoms in a beam are influenced by external magnetic field and the relativistic Lorentz factor

Nemenov

 $\vec{r} \equiv$ relative distance between π^+ and π^- mesons in $A_{2\pi}$ atom

 $\vec{B}_{Lab} \equiv$ laboratory magnetic field

 $\vec{F} \equiv$ electric field in the CM system of an $A_{2\pi}$ atom

25 September 2004

$$F = \beta \gamma B_{\text{Lab}} \approx \gamma B_{\text{Lab}}$$

VILLARS 2004 CERN SPS and PS Committee

The dependence of $A_{2\pi}$ life time in 2p-states τ_{eff} from a strength of the electric field F

$$\tau_{\rm eff} = \frac{\tau_{2p}}{1 + \frac{|\xi|^2}{4} \frac{\tau_{2p}}{\tau_{2s}}} = \frac{\tau_{2p}}{1 + 120 |\xi|^2}$$

where: $|\xi|^2 \approx \frac{F^2}{(E_{2p} - E_{2s})^2}$
 $\underline{B_{Lab} = 4 \text{ Tesla}}$ $\begin{cases} \gamma = 20 \ \gamma = 40 \ \gamma = 40 \ \gamma = 40 \ \gamma = 40 \ \gamma = 6 \ \gamma = 120 \ \gamma$

VILLARS 2004 CERN SPS and PS Committee

Upgraded DIRAC setup

(Addendum to DIRAC/PS212 (CERN) (13/04/04): CERN-SPSC-2004-009 (SPSC-P-284 Add.4))

Upstream of the spectrometer magnet: microdrift chambers (MDC), scintillating fiber detectors (SFD), ionization hodoscopes (IH). Schematic top view of the updated DIRAC spectrometer.

Downstream of the magnet, in each spectrometer arm:

drift chambers (DC),

vertical and **horizontal** scintillation hodoscopes (VH, HH),

gas Cherenkov counters (Ch),

preshower detector (PSh) and, behind the iron absorber,

muon detector (Mu).

In the left arm: Aerogel Cherenkov counters.

VILLARS 2004 CERN SPS and PS Committee

L. Nemenov

 $A_{2\pi}$ and $A_{\pi K}$ production

for atoms $\vec{v}_1 = \vec{v}_2$ where \vec{v}_1, \vec{v}_2 – velocities of particles in the L.S. for all types of atoms for $A_{2\pi}$ production $\vec{p}_1 = \vec{p}_2$

for
$$A_{\pi K}$$
 production $\vec{p}_{\pi} = \frac{m_{\pi}}{m_{K}}\vec{p}_{K}$

Nemenov

VILLARS 2004 CERN SPS and PS Committee

Inclusive cross-sections for π^+ , π^- - mesons generation

 $E_p = 450 GeV \ \theta_L = 0^\circ$

L. Nemenov

VILLARS 2004 CERN SPS and PS Committee

Inclusive cross-sections for *K*⁺, *K*⁻ **- mesons generation**

$$E_p = 450 GeV \ \theta_L = 0^{\circ}$$

CERN

VILLARS 2004 CERN SPS and PS Committee

L. Nemenov

$A_{2\pi}$ momentum distributions

VILLARS 2004 CERN SPS and PS Committee

L. Nemenov

$A_{2\pi}$ momentum distributions

VILLARS 2004 CERN SPS and PS Committee

L. Nemenov

Yield of $A_{2\pi}$ and π^{\pm} into the aperture of 1.7·10 ⁻³ sr per one proton interaction					
\varTheta_L	5.7°±1.3°	5.7°±1.3°	2°±1.3°	0°±1.3°	
E_p	24 GeV	450 GeV	450 GeV	450 GeV	
W _A	0.46.10-8	0.53.10-7	$0.47 \cdot 10^{-6}$	0.18·10 ⁻⁵	
W_A^{N}	1.	12.	103.	389.	
W_{π}	0.032	0.1	1.1	6.6	
$W^{\ N}_{\pi}$	1.	3.1	34.	206.	
W_A/W_{π}	1.4.10-7	5.3.10-7	4.3.10-7	2.7.10-7	
W_A^N/W_π^N	1.	3.7	3.	1.9	

Yield of $A_{2\pi}$ per one proton interaction, detectable by DIRAC setup at Θ_L =5.7°					
E_p	24 GeV (old)	450 GeV (old)	450 GeV (new)		
W _A	0.96·10 ⁻⁹	0.11·10 ⁻⁷	0.13.10-7		
W_A^{N}	1.	12.	13.		
W_A/W_{π}	3.10-8	1.1.10-7	1.3.10-7		
W_A^N/W_π^N	1.	3.7	4.3		
		A multiplier due to different spill duration ~4			

1.

$A_{2\pi}$ momentum distributions

— - red curve $A_{2\pi}$ spectra in channel the aperture ••• - green curve $A_{2\pi}$ spectra registered by the set-up

VILLARS 2004 CERN SPS and PS Committee

Total

gain

17.

L. Nemenov

25 September 2004

15.

Yield of $A_{K^{+}\pi^{-}}$ and $A_{K^{-}\pi^{+}}$ into the aperture of 1.7·10 ⁻³ sr per one proton interaction								
	$A_{K}^{+}\pi^{-} \qquad \qquad A_{K}^{-}\pi^{+}$						-π ⁺	
\varTheta_L	5.7°±1.3°	5.7°±1.3°	2°±1.3°	0°±1.3°	5.7°±1.3°	5.7°±1.3°	2°±1.3°	0°±1.3°
E_p	24GeV	450GeV	450GeV	450GeV	24GeV	450GeV	450GeV	450GeV
W _A	0.11.10-8	0.13.10-7	0.16·10 ⁻⁶	0.65·10 ⁻⁶	0.60·10 ⁻⁹	0.10·10 ⁻⁷	0.11.10-6	$0.54 \cdot 10^{-6}$
W_A^{N}	1.	12.	146.	610.	1.	17.	192.	897.
W_A/W_{π}	3.4·10 ⁻⁸	1.3.10-7	1.5·10 ⁻⁷	9.8·10 ⁻⁸	1.9·10 ⁻⁸	110-7	110-7	8.2·10 ⁻⁸
W_A^N/W_π^N	1.	3.8	4.2	2.9	1.	5.3	5.3	4.4

- red curve $A_{2\pi}$ spectra in the channel aperture ••• - green curve $A_{2\pi}$ spectra registered by the set-up Yield of A_{K}^{+} per one proton interaction, detectable by DIRAC setup at Θ_{L}^{-} =5.7°

E_p	24 GeV (old)	450 GeV (old)	450 GeV (new)	
W _A	0.20.10-10	0.34·10 ⁻⁹	0.10·10 ⁻⁸	
W_A^{N}	1.	17.	49.	
W_A/W_{π}	6.2·10 ⁻¹⁰	3.4·10 ⁻⁹	1.10-8	
W_A^N/W_π^N	1.	5.4	16	
		A multiplier different sp duration ~4	due to ill	
Total gain	1.	22.	64.	

VILLARS 2004 CERN SPS and PS Committee

L. Nemenov

Yield of $A_{\pi}+_{K}$ - per one proton interaction, detectable by DIRAC setup at Θ_{L} =5.7°					
E_p	<i>E_p</i> 24 GeV (old)		450 GeV (new)		
W _A	0.11.10-10	0.23·10 ⁻⁹	0.71·10 ⁻⁹		
W_A^N 1.		21.	63.		
W_A/W_{π}	3.4·10 ⁻¹⁰	2.3·10 ⁻⁹	7.1·10 ⁻⁹		
W_A^N/W_π^N 1.		6.7	20.6		
		A multiplier due to different spill duration ~4			
Total gain	1.	27.	82.		

 A_{π^+K} – momentum distributions

- red curve $A_{2\pi}$ spectra in the channel aperture ••• green curve $A_{2\pi}$ spectra registered by the set-up

Conclusions

Present low energy QCD predictions for $\pi\pi$ and πK scattering lengths

 $\pi \pi \quad \delta a_0 = 2.3\% \quad \delta a_2 = 2.3\% \quad \delta (a_0 - a_2) = 1.5\%$ $\pi K \quad \delta (a_{1/2} - a_{3/2}) \approx 10\%$

Expected results of DIRAC ADDENDUM at PS CERN

 $\tau(A_{2\pi}) \rightarrow \delta(a_0 - a_2) = \pm 2\%(stat) \pm 1\%(syst) \pm 1\%(theor)$ $\tau(A_{\pi K}) \rightarrow \delta(a_{1/2} - a_{3/2}) = \pm 10\%(stat) \pm \dots \pm 1.5\%(theor)$ Observation of metastable $A_{2\pi}$ DIRAC at SPS CERN

 $\tau(A_{2\pi}) \to \delta(a_0 - a_2) = \pm 0.5\%(stat)$ $\tau(A_{\pi K}) \to \delta(a_{1/2} - a_{3/2}) = \pm 2.5\%(stat)$ $(E_{np} - E_{ns})_{\pi\pi} \to \delta(2a_0 + a_2) \approx \pm 2.5\%(stat)$

 $(E_{np} - E_{ns})_{\pi K} \rightarrow \delta(2a_{1/2} + a_{3/2})$

Possibility of the observation $(\pi^{\pm}\mu^{\mp})$ – atoms and $(K^{+}K^{-})$ – atoms will be studied.

VILLARS 2004 CERN SPS and PS Committee

Nemenov