

27 September 2005 **CERN 2005 SPS and PS Experiments Committee**

$\pi^{\pm} K^{\mp}$ atoms to test low energy QCD LIFETIME MEASUREMENT OF $\pi^+\pi^-$ AND

DIRAC Addendum

and

LIFETIME MEASUREMENT OF $\pi^+\pi^-$

Status Report of

DIRAC

ATOMS TO TEST LOW ENERGY OCD

PREDICTIONS

	DIRAC CO		boration		
	75 Physicists 1	irom	18 Institutes		
CERN A	CERN Geneva, Switzerland		Tokyo Metropolitan Ur	niversity <i>Tokyo</i> , Japan	
	Czech Technical University Prague, Czech Republic		IFIN-HH	Bucharest, Romania	
	Institute of Physics ASCR <i>Prague</i> , Czech Republic	Â	JINR	<i>Dubna</i> , Russia	
	Ioannina University Ioannina, Greece		SINP of Moscow State	University <i>Moscow</i> , Russia	
	INFN-Laboratori Nazionali di Frascati Frascati, Italy		IHEP	Protvino, Russia	
	Trieste University and INFN-Trieste Trieste, Italy	.	Santiago de Composte Santiago a	la University <i>le Compostela</i> , Spain	
	University of Messina Messina, Italy	Ð	Basel University	Basel, Switzerland	
] KEK <i>Tsukuba</i> , Japan	0	Bern University	Bern, Switzerland	
	Kyoto Sangyou University Kyoto, Japan	•	Zurich University	Zurich, Switzerland	
N N N N N N N N N N N N N N N N N N N	L. Nemenov	Expe	<mark>riments Committee</mark> 27 Septer	mber 2005	AC

Status of **DIRAC**

- Life time measurement
- Increasing of the statistics
- Decreasing of the systematic error

DIRAC Addendum

- Modified DIRAC setup
- Channel and shielding
- Detectors
- Readout system
- Trigger
 - DAQ

		DID	RAC 1045	anal	ysis (
Results for the life	etime:	$\tau_{1S} = 2.91$	$(-0.38)_{st}$	$(0.49)^{t}$	$=2.91^{-1}$	-0.49 -0.62	τ_{1S}^{ChPT}	$= 2.9 \pm 0$	1 [fs]
Result for scatteri	ing leng	gths: a_0	$-a_2 =0$.264 -0.()33 $[m_{\pi}^{-1}]$	$\left[1 \right] a_0 - c$	$a_2\Big _{ChPT} = 0$	0.265±0	004 $[m_{\pi}^{-1}]$
Improvemen	ts wit	h full	statist	tics					
		Num	ber of A	tomic pai	irs (appro))			
	Pt1999 24 GeV	Ni2000 24 GeV	Ti2000 24 GeV	Ti2001 24 GeV	Ni2001 24 GeV	Ni2002 20 GeV	Ni2002 24 GeV	Ni2003 20 GeV	Sum
Sharp selection	280	1300	006	1500	6500	3000	4500	1400	19400
Downstream only									27000
$\frac{\sigma_{\rm P_{\rm br}}}{\rm P_{\rm br}} \bigg _{stat}^{now} = 0.05$	$\frac{1}{D}$	br full stati	stics $= 0$,	$03 \Rightarrow \frac{6}{2}$	$\frac{\delta a_0 - a }{a_0 - a_0}$	$\left. \frac{x_2}{2} \right _{stat} =$	= 5%	as in t	he project

27 September 2005 **CERN 2005 SPS and PS Experiments Committee**

analysis
\mathbf{C}
Ě

Improvements on systematic

CC background	no improvement	± 0.007
signal shape	no improvement	± 0.002
Multiple scattering	measured to $\pm 1\%$	+ 0.002 /-0
K^+K^-/pp_{har} admixtures	to be measured [*]	+ 0.000 /-0
Finite size effects	to be measured** /improved calculations	+ 0.000 /-0
Total		+ 0.008 /-0

.017

023

002

030

* To be measured in 2006/2008 with new PID

** To be measured in 2006/2008 with new trigger for identical particles at low Q

Improvements on data quality by fine tunings

B-field adjustment and alignment tuning with A-mass Adjustments of drift characteristics almost run-by-run \Rightarrow New preselection for all runs

Comments on analysis strategies

Using only downstream detectors (Drift chambers) and investigating only Q_L causes less sensitivity to multiple scattering and to the signal shape. Studies are under way.

- characteristic scale |a| = 387 fm (Bohr radius of $\pi\pi$ system)
 - average value of $r^* \sim 10 \ fm$
- range of $\omega \sim 30 \ fm$
- range of $\eta' \sim 900 \ fm$
- critical region of $r^* \sim |a|$ is formed by ω and η' pairs

27 September 2005

27 September 2005

CERN 2005 SPS and PS Experiments Committee

Expected shift with multi-layer target in future DIRAC 5 times less

Systematic shift in τ measurement from finite-size effect < 10%

 $N_{\omega}(\pi^{+}\pi^{-}) = 20\% \Rightarrow \delta P_{br} \sim 3\% \Rightarrow \delta \tau \sim 7.5\%$

 $N_{\omega}(\pi^{+}\pi^{-}) = 15\% \Rightarrow \delta P_{br} \sim 2\% \Rightarrow \delta \tau \sim 5\%$

In $\pi^+\pi^-$ system finite-size effect induces shift in P_{br}

 \checkmark upper limit at 1σ of $\pi^-\pi^-$ fit

✓ UrOMD simulation

0.12 0.14 0.16 0.18 0.2

0.1

0.04 0.06 0.08

0.02

0.6

0.4

0.2

0.8

1.2

q [GeV/c]

i.e. less then present DIRAC statistical error in τ .

Simulation vs fit of DIRAC $\pi^-\pi^-$ CF • fit result $N_m(\pi^-\pi^-) = 21\pm7\%$ simulation $N_m(\pi^-\pi^-) = 19.2\%$

#

Finite-size effects (II)

 $\operatorname{CF}(\pi^-\pi^-)$ arbitrary normalization

 \Rightarrow good description of ω pairs

by UrQMD

	Main goal of DIRAC Addendum	
†	Lifetime measurement, in a model-independent way, of $A_{2\pi}$ atoms with precision better than 6%, which gives a precision for $ a_0-a_2 $ better than 3%; this will provide a sensitive check for understanding the chiral symmetry	
	breaking in QCD, giving an indication about the value of the quark condensate.	
†	Observation of $A_{\pi K}$ and $A_{K\pi}$ atoms. The measurement of their lifetime with precision of 20% and difference of	
•	πK scattering length $ a_{1/2}$ - $a_{3/2} $ with accuracy about 10%. Observation of the long-lived (metastable) states of $A_{2\pi}$ with the possibility of measuring the energy difference between ns and np states, and of	
	determining the value of $2a_0 + a_2$ in a model-independent way.	
	energy QCD and for understanding the nature of the QCD vacuum	
	L. Nemenov CERN 2005 SPS and PS Experiments Committee 27 September 2005 PS212	- Callerander

Time scale for the $A_{g_{\pi}}$ a	nd A _{nk} experimer	
Manufacture of all new detectors and electron Installation of new detectors:	ics: 18 months 3 months	
2006 Test of the Upgraded setup and calibration: Observation $A_{2\pi}$ in the long-lived states.	4 months	
2007 and 2008 Measurement of $A_{2\pi}$ lifetime:	12 months	
In this time 86000 $\pi\pi$ atomic pairs will be collected to estimate $A_{2\pi}$ lifetime with precision of:	$\frac{\tau}{1} = 6\%, \frac{\sigma(a_0 - a_2)}{a_0 - a_2} =$	3 %
At the same time we also plan to observe $A_{\pi K}$ and $A_{K\pi}$; to detect 5000 πK atomic pairs to estimate $A_{\pi K}$ lifetime with precision of:	$\frac{\tau}{c} = 20\%_0, \frac{\sigma(a_{1/2} - a_{3/2})}{a_{1/2} - a_{3/2}} = 1$	0%0
This estimation of the beam time is based on the assumption of having 2.5 spills per super-	$4_{2\pi}$ statistics collected in 2001 and cycle during 20 hours per day.	on the
L. Nemenov	eriments Committee 27 September 2005	DIRAC

DIRAC	Addendum
Present low energy QCD predictions for ππ scattering lengths:	$Results from E865/BNL experiment: K \rightarrow \pi^{+}\pi^{-} e^{+}v_{e}(K_{e4})$ C Dialofs of Dbug Dove Lott 07 (2001) 201001
ChPT predicts s-wave scattering lengths: $\alpha = 0.220 \pm 0.005720$	D.FISIAK et al., Fnys. Kev. Lett. d/ (2001) 221001 using Roy eqs.
$a_0 - 0.220 \pm 0.000 (2.3\%)$ $a_2 = -0.0444 \pm 0.0010 (2.3\%)$	$a_0 = 0.203 \pm 0.033 (16\%)$ $a_2 = -0.055 \pm 0.023 (42\%)$
$a_0 - a_2 = 0.265 \pm 0.004 (1.5\%)$	using Roy eqs. and chiral symmetry constraints $a_2 = f_{ChPT}(a_0)$
L. Rosselet et al., Phys. Rev. D15 (1977) 574	$a_0 = 0.216 \pm 0.013 (stat) \pm 0.004 (syst) \pm 0.002 (theor)$ $\delta a_0 = \pm 6\% (stat) \pm 2\% (syst) \pm 1\% (theor)$
$a_0 = 0.28 \pm 0.05 (18\%)$ using Roy eqs.	Results from NA48/2: $K^+ \rightarrow \pi^0 \pi^0 \pi^+$
	$(a_0 - a_2)m_{\pi} = 0.281 \pm 0.007 (stat) \pm 0.014 (syst)$ not including theoretical uncertainties
Expected results of DIRA	C (upgraded) at PS CERN:
$\tau(A_{2\pi}) \rightarrow \delta(a_0 - a_2) = \pm 2\%$	$(stat) \pm 1\%(syst) \pm 1\%(theor)$
L. Nemenov	PS Experiments Committee 27 September 2005

Trajectories of π^- and K^+ from the $A_{\pi K}$ break-up

The numbers to the right of the tracks lines are the π ⁻ and K ⁺ momenta in GeV/c The $A_{\pi K}$, π^- and K^+ momenta are shown in the following table:

<i>(c)</i>	0	5	0	0
P _K (GeV/	4.	4.	2.	8.
P_{π} (GeV/c)	1.13	1.27	1.41	2.26
P _{atom} (GeV/c)	5.13	5.77	6.41	10.26

27 September 2005

L. Nemenov

Upgrade DIRAC experimental set-up description

27 September 2005 **CERN 2005 SPS and PS Experiments Committee**

	$\overline{\mathcal{O}}$	
	5	
	0	
	50	
5		
	<u> </u>	
Ż	Ľ	
ē •	D IC	
2		
2	odrurt	
2	CODIFIC	
20	crodrutt	
20	ICrodiritt	
	Alcrodirit	
	MICFOORFILT	

Basel University (Basel, Switzerland) Responsibility: JINR (Dubna, Russia)

Characteristics:

- $I = 2 \times 10^{11}$ protons per spill > 98%; \checkmark spatial accuracy $< 22\pm4$ µm from the beam test; ✓ one plane efficiency at the beam intensity \checkmark total detector thickness <5×10⁻³ X_{0} ; \checkmark double track resolution < 200 μm ; \checkmark drift time <30 *ns*.
 - \checkmark drift time <30 *ns*; \checkmark time resolution < 1 *ns*;
 - \checkmark readout time < 3 μ s.

According to the results of MDC tests in 2003-2004, the heavy radiation conditions. This improvement will be achieved by some modification of MDC electrodes. detector stability has to be improved for the DIRAC

February-April 2006: new electrodes making at JINR. April-May 2006: tests

Time Schedule:

27 September 2005

L. Nemenov

Responsibilit	ty: Japan Universi JINR (<i>Dubna</i> , University of M	sities (Japan); IHEP (<i>Protvino</i> , Russia); Russia); INFN-Trieste (<i>Trieste</i> , Italy); Messina (<i>Messina</i> , Italy)	
	Large High Resolution Hodoscope for New DIRAC Experiment	Characteristics:	
· · · · ·	Full Width of SciFi bundle: 98,44 mm Fibre datancer: 0.20.20. Fibre datancer: 0.20.20. Total Thickness of SciFi bundle: 2.7 mm Number of SciFi columns; 480 Number of SciFi columns; 480 Number of SSFM (H658); 30 Total Ength; 5.20 mm Size of SSFM (H638); 30 Size of SSFM (H638); 30 Ware 222 mm, L = 187.5 mm	 Size of the plane Thickness of the material for o 	100×100 mm ² e plane 3 mm (1% RL)
		 Mean light output: Mean Det. Efficiency: 	$\approx 11 \ p.e.$ $\approx 98 \%$
() () () () () () () () () () () () () (Time Resolution without coord and amplitude corrections 	nate $\approx 0.46 ns$
		 Space resolution 	60 µm.
		A New electronics (ADC-TDC for each chann	() 1200 channels
Time Sch Additional	l tests of the F1 Pro	ototype with a radioactive source are scheduled f	r October 2005.
Production	n of fiber layers and	id detector housing will be finished in December	005. Components
tor FE electron	ctronics will be dellefore March 2006.	All electronics boards will be finished by May 2.	006. The full
detector w	rill be assembled be	before the beam test at T8 scheduled for June 200	

Scintillation Fiber Detector

DIRAC

PS212

CERN 2005 SPS and PS Experiments Committee

CERN 2005 SPS and PS Experiments Committee

detector will be used without In 2006 the

Ionisation Hodoscope

Basel University (Basel, Switzerland)

IHEP (Protvino, Russia)

Responsibility:

1	

Responsibility: JINR (Dubna, Russia)

Present status of the Drift Chamber (DC) System.

The DC system consists of four chamber modules per arm including

6 sensitive planes in X and Y projection.

The first module (DC1) has a frame common to both arms; it has two active regions of

 $80 \times 40 \text{ cm}^2$ housing 6 planes of signal wires (X, F, W, X', Y', W').

Three modules are then place on each spectrometer arm:

- \checkmark DC2 with an active area of 80×40 cm² and 2 wire planes (X, Y);
- \checkmark DC3 with an active area of 112×40cm² and 2 wire planes (X, Y);
- \checkmark DC4 with an active area of 128×40cm² and 4 wire planes (X, Y, X', Y').

After successful and long drift chamber operation at the first stage of the experiment, it was decided to perform full revision of all drift chambers.

Time Schedule:

October – November one more DC4 module will be repaired. In the same time all these modules will be tested with radioactive source. All DC modules, which must be installed in the DIRAC setup, will be ready for the experiment in 2005. In the first half of 2006 all spare DC modules will be repaired. In the first half of the year one DC1, three DC2, two DC3 and one DC4 modules were repaired. In

L. Nemenov

CERN 2005 SPS and PS Experiments Committee

Aerogel Cherenkov detector (II)

Aerogel Cherenkov detector (IV)

Time Schedule

End of the year : Construction of the mechanical structure for the final design January – March 2006 : aerogel with index n=1.008 will be produced for 1 arm

first test of the final design with cosmic rays

✓ and possibly e -test beam

March – May 2006 : aerogel for first arm will be produced

✓ installation in beam

May – July 2006 : aerogel for second arm will be produced

Cherenkov detector (C₄F₁₀) – I

Responsibility: JINR (Dubna, Russia); IFIN-HH (Bucharest, Romania); Zurich University (Zurich, Switzerland) Adviser: O. Ullaland (CERN)

Time Schedule: Design of the detector will be ready by November 2005. In October 2005 request for mirrors production will be prepared. Final drawings of the detector support and housing will be ready in January 2006. Production will take 3 months and will be finished by May 2006. Detector with mirrors and gas system will be assembled in May-June 2006.

27 September 2005 **CERN 2005 SPS and PS Experiments Committee**

Cherenkov detector (C₄F₁₀) - II

3

27 September 2005

27 September 2005

CERN 2005 SPS and PS Experiments Committee L. Nemenov

Time Schedule: New preshower will be installed in October-November 2005.

Preshower detector

Responsibility: IFIN-HH (Bucharest, Romania)

Muon detector

IHEP (Protvino, Russia) Responsibility:

24 slabs (12 slabs per arm) will be order to increase its acceptance. added to the existing muon scintillation hodoscopes in

decays will increase by few percent. Without these slabs background of non-identified muons from pion

The new slabs will be installed in 2006 or in 2007. Time Schedule:

Readout System (I)

Responsibility: JINR (Dubna, Russia); Basel University (Basel, Switzerland); Santiago de

Readout system (II)

CAMAC crate

prototype is scheduled to be ready The level translator to LVDS and pulse width shaper modules have tion of full set of transmitters it's electronics will use a high-speed before March 2006. For produc-In 2006 new electronics will be tested with 32 channels of SFD. (ADC+TDC) was successfully used with SciFi detector. This been developed. Transmitter USB bus for data transfer. In 2004 a prototype D412 needed one month. ime Schedule:

	Trigger
Responsibility: JINR (<i>Dubna</i> , Russia)	What we need:
The List of Triggers:	1. For $A_{\pi K}$ and $A_{K\pi}$ two more track analysers (cost estimation 3700 CHF for unit).
$I. A_{\pi\pi}, A_{\pi K}, A_{K\pi}$	2. New T1 will be without meantimers, so it's
2. $\pi^-\pi^-$ and $(\pi^+\pi^+$ and $p\tilde{p})$	necessary to organize coincidence for whotomultipliers of one slab for VH and HH
3. K^+K^- and $p\tilde{p}$	3. Trigger for identical particles (track analyser
4. e^+e^- and $(e^+e^-e^+e^-)$	modification).
5. $\pi^{-}\pi^{-}$ $(\pi^{+}or \tilde{p}),$ $\pi^{-}\pi^{-}$ $(\pi^{+}\pi^{+}).$	The trigger existent with the above featured
$\pi^+\pi^+(\pi^-)$ and $\pi^+\pi^+(\pi^-\pi^-)$	will be ready when beam starts and tuned
6. Nucleus and antinucleus	III MIC IIIMAI DAIL OI MIC DINAV 2000 IMI.
Expected number of triggers per spill Expected volume of data per spill	~ 4000, event volume 4 <i>kbyte</i> ~ 16 <i>Mbyte</i> (~50 <i>Mbyte/supercycle</i>)
(current transmitting capacity of the li	ne with IT-division (~50 <i>Mbyte/supercycle</i>)

27 September 2005 **CERN 2005 SPS and PS Experiments Committee**

	DIRAC Setup Modificat	ions (Cost estimation)
>	New Vacuum Channel and Shielding	20 kCHF (JINR)
>	Micro Drift Chambers	18 kCHF (JINR)
>	New Scintillating Fiber Detector	135 kCHF (Japanese University,
	with Electronics	JINR, INFN-Trieste)
>	Vertical Hodoscope (4 additional slabs)	16 kCHF (Santiago de Compostela)
>	Horizontal Hodoscope	12 kCHF (Prague)
>	Aerogel detectors	180 kCHF (Zurich)
>	Upgrade of the existing Cherenkov counter	10 kCHF (Common Fund)
>	Heavy Gas Cherenkov Counter	80 kCHF (Bucharest,
		Common Fund)
>	Preshower detector	20 kCHF (Bucharest)
>	Muon detector	12 kCHF (Protvino)
>	Trigger and Readout system	120 kCHF (Common Fund,
		Santiago de Compostela)
>	Data Acquisition System (new hardware)	20 kCHF (Common Fund)
	Overall cost of the setup upgrading:	643 KCHF
CER	CERN 2005 SPS and PS E	xperiments Committee
1	L. Nemenov	27 September 2005 PS212

PS212