

First measurement of the π⁺π⁻ atom lifetime

Leonid Afanas'ev on behalf of DIRAC collaboration

Joint Institute for Nuclear Research, Dubna

 XI. INTERNATIONAL CONFERENCE ON HADRON SPECTROSCOPY – HADRON 05
21 - 26 August 2005, Rio de Janeiro, Brazil

DImeson Relativistic Atomic Complexes

Lifetime Measurement of $\pi^+\pi^-$ atoms to test low energy QCD predictions www.cern.ch/DIRAC

Basel Univ., Bern Univ., Bucharest IAP, CERN, Dubna JINR, Frascati LNF-INFN, Ioannina Univ., Kyoto-Sangyo Univ., Kyushu Univ. Fukuoka, Moscow NPI, Paris VI Univ., Prague TU, Prague FZU-IP ASCR, Protvino IHEP, Santiago de Compostela Univ., Tokyo Metropolitan Univ., Trieste Univ./INFN, Tsukuba KEK.

90 Physicists from 18 Institutes

Pionium lifetime

Pionium is a hydrogen-like atom consisting of π^+ and π^- mesons E_B=-1.86 keV, r_B=387 fm, p_B \approx 0.5 MeV

The lifetime of $\pi^+\pi^-$ atoms (A_{2 π}) is dominated by charge exchange process into $\pi^0\pi^0$:

 π^+

$$\Gamma = \frac{1}{\tau} = \Gamma_{2\pi_0} + \Gamma_{2\gamma} \qquad \qquad \frac{\Gamma_{2\gamma}}{\Gamma_{2\pi_0}} \approx 4 \times 10^{-3}$$

$$\Gamma_{1S,2\pi^{\circ}} = \frac{1}{\tau_{1S}} \propto |a_0 - a_2|^2$$

 a_0 and a_2 are the $\pi\pi$ S-wave scattering lengths for isospin I=0 and I=2.

$$\frac{\Delta \tau}{\tau} = 10\% \implies \frac{\Delta (a_0 - a_2)}{a_0 - a_2} = 5\%$$

Pionium lifetime in QCD

J.Gasser et al., Phys.Rev. D64 (2001) 016008:

$$\Gamma_{2\pi^{\circ}} = \frac{1}{\tau} = \frac{2}{9} \alpha^{3} p |a_{0} - a_{2}|^{2} (1 + \delta_{\Gamma}), \qquad \delta_{\Gamma} = (5.8 \pm 1.2)\%$$

The $\pi\pi$ scattering lengths have been calculated in the framework of Chiral Perturbation Theory (ChPT):

G. Colangelo, J. Gasser and H. Leutwyler, Nucl. Phys. B603 (2001) 125:

$$a_0 = 0.220 \pm 0.005, \quad a_2 = -0.0444 \pm 0.0010,$$

 $a_0 - a_2 = 0.265 \pm 0.004$

$$\tau = (2.9 \pm 0.1) \times 10^{-15} s$$

Experimental results

$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e (K_{e4}) decay$						
$a_0 = 0.26 \pm 0.05$	L. Rosselet et al., Phys. Rev. D 15 (1977) 574					
$a_0 = 0.216 \pm 0.013$ ± 0.003 (syst) $a_2 = -0.0454 \pm 0.0031$	New measurement at BNL (E865) S.Pislak et al., Phys.Rev. D 67 (2003) 072004					

±0.0013(syst)

 $\pi N \rightarrow \pi \pi N$ near threshold

 $a_0 = 0.26 \pm 0.05$ C.D. Froggatt, J.L. Petersen, Nucl. Phys. B 129 (1977) 89 $a_0 = 0.204 \pm 0.014$ M. Kermani et al., Phys. Rev. C 58 (1998) 3431 ± 0.008 (syst)

$K^+ \rightarrow \pi^+ \pi^0 \pi^0$ and $K_L \rightarrow 3\pi^0$ NA48

 $|a_0 - a_2| = 0.281 \pm 0.007 \text{ (stat.)} \pm 0.014 \text{ (syst.)}$

N.Cabibbo, Phys. Rev. Lett. 93, 121801 (2004) N.Cabibbo, G.Isidori, hep-ph/0502130

Production of pionium

Atoms are Coulomb bound state of two pions produced in one proton-nucleus collision

$$\frac{d\sigma_{nlm}^{A}}{d\vec{P}} = (2\pi)^{3} \frac{E_{A}}{M_{A}} |\psi_{nlm}^{(C)}(0)|^{2} \frac{d\sigma_{s}^{0}}{d\vec{P}_{+}d\vec{P}_{-}} \Big|_{\vec{P}_{+}=\vec{P}_{+}}$$

Background processes:

Coulomb pairs. They are produced in one proton nucleus collision from fragmentation or short lived resonances and exhibit Coulomb interaction in the final state

$$\frac{d^2\sigma_C}{d\vec{p}_+d\vec{p}_-} = A_C(q)\frac{d\sigma_s^0}{d\vec{p}_+d\vec{p}_-}, \qquad A_C(q) = \frac{2\pi n_\pi \alpha/q}{1 - \exp(-2\pi n_\pi \alpha/q)}$$

Non-Coulomb pairs. They are produced in one proton nucleus collision. At least one pion originates from a long lived resonance. No Coulomb interaction in the final state

Accidental pairs. They are produced in two independent proton nucleus collision. They do not exhibit Coulomb interaction in the final state

Method of pionium detection

L.Nemenov, Sov.J.Nucl.Phys. 41 (1985) 629

Pionium is created in nS states then it interacts with target material:

Annihilation: $A_{2\pi} \rightarrow \pi^0 \pi^0$ $\lambda_{decay} = \gamma c \tau \approx 15 \mu m$ for $\gamma \approx 17$

Excitation: transitions between atomic levels

 $\lambda_{\text{int}}^{1S} \approx 20 \ \mu m$ for Ni

Break-up(ionisation): characteristic "atomic" pairs n_A

- Q_{cms}<3MeV/c
- \rightarrow in laboratory system $E_+ \approx E_-$, small opening angle $\theta < 3$ mrad

Coulomb and atomic pairs are detected simultaneously

$$P_{br} = \frac{n_A}{N_A} = \frac{n_A}{k_B N_C}$$

Break-up probability

Solution of the transport equations provides one-to-one dependence of the measured break-up probability (P_{br}) on pionium lifetime τ

All targets have the same thickness in radiation lengths 6.7*10⁻³ X₀

> There is an optimal target material for a given lifetime

The detailed knowledge of the cross sections (Afanasyev&Tarasov; Trautmann et al) (Born and Glauber approach) together with the accurate description of atom interaction dynamics (including density matrix formalism) permits us to know the curves within 1%.

DIRAC Spectrometer

Setup features:

angle to proton beam Θ =5.7° $\Omega = 1.2 \cdot 10^{-3} \text{ sr}$ channel aperture 2.3 T·m magnet momentum range $1.2 \le p_{\pi} \le 7 \text{ GeV}/c$ resolution on relative momentum $\sigma_{QX} \approx \sigma_{QY} \leq 0.5 \text{ MeV}/c$, $\sigma_{QL} \approx 0.5 \text{ MeV}/c$

Trigger performance

Calibrations

Positive arm mass spectrum, obtained by TOF difference, under π^- hypothesis in the negative arm.

 M_{π}^2

 $M_{\rm p}^2$

M²

10

10³

Analysis based on MC

Atoms are generated in **nS states** using measured momentum distribution for **short-lived** sources. The atomic pairs are generated according to the evolution of the atom while propagating through the target

Background processes:

Coulomb pairs are generated according to $A_C(Q)Q^2$ using measured momentum distribution for **short-lived** sources.

Non-Coulomb pairs are generated according to Q^2 using measured momentum distribution for **long-lived** sources.

Atomic pairs MC

Atomic pairs

Break-up probability

$$P_{br} = \frac{n_A}{N_A} = \frac{n_A^{rec} (Q \le Q_{cut})}{k(Q_{cut}) N_C^{rec} (Q \le Q_{cut})}$$

	n _A	$N_C(Q_{cut})$	P _{br}				
Q	6518±373	106500±1130	0.442±0.026				
$\mathbf{Q}_{\mathbf{L}}$	6509±330	82289±873	0.445±0.023				
Q&Q _L	6530±294	106549±1004	0.447±0.023				
k(Q _{cut} =4 MeV/c)=0.1384, k(Q _{L,cut} =2 MeV/c)=0.1774							

Due to target impurities by atoms with Z<28 P_{br} has to be increased by 0.005

Breakup probability

$$\boldsymbol{P}_{br} = 0.452 \pm 0.023_{stat} + 0.009_{syst} = 0.452_{-0.039}^{+0.025}$$

Summary of systematic uncertainties:

source	σ			
CC-background	±0.007			
signal shape	± 0.002			
multinle scattering angle +5%	+0.006			
multiple scattering angle -10%	-0.013			
K+K- and nn nairs admixture	+0.000			
K K and pp pairs admixture	-0.024			
correlation function for non-point production	+0.000			
correlation function for non-point production	-0.017			
Total	+0.009			
10ta 1	-0.032			

Lifetime of Pionium

Result from DIRAC:

$$\tau = \left(2.91^{+0.45}_{-0.38}\right)_{stat} + 0.19_{syst} fs$$

ChPT prediction: $\tau = (2.9 \pm 0.1) \, \text{fs}$

Phys. Lett. B 619 (2005) 50-60; hep-ex/0504044

Results from DIRAC

- DIRAC collaboration has built up the double arm spectrometer which provides a pair relative momentum (Q) resolution of 1 MeV/c for Q < 30 MeV/c
- Observation of more than 15000 of $\pi^+\pi^-$ pairs from pionium break-up
- The analysis of Ni 2001 data provides a lifetime measurement:

$$\tau = (2.91^{+0.49}_{-0.62}) \text{ fs} \qquad |a_0 - a_2| = 0.264^{+0.033}_{-0.020} m_{\pi}^{-1}$$

- Improvements to come:
 - 1. to improve on statistics: analyse full $\pi^+\pi^-$ data sample
 - 2. to improve on systematics:
 - ✓ different analysis procedures
 - ✓ study of correlation function
 - ✓ detailed study of multiple scattering
 - ✓ analysis of data taken with single-multi layer target

Atomic pairs

Number of Atomic pairs

									-
	Pt1999	Ni2000	Ti2000	Ti2001	Ni2001	Ni2002	Ni2002	Ni2003	Sum
	24 GeV	24 GeV	24 GeV	24 GeV	24 GeV	20	24	20	for
						GeV	GeV	GeV	Ni and Ti
With	282 ±	1353 ±	935 ±	1476 ±	5733 ±	1925 ±	2555 ±	1410 ±	15387 ±
upstream	96	385	273	330	577	390	525	264	1078
detectors									
(<i>Q_L</i> <1.5 <i>MeV/c</i>									
$Q_T < 4 MeV/c$)									
Without	219 ±	3839 ±	$1767 \pm$	3314 ±	9050 ±	$3040* \pm$	$4030* \pm$	$2230^{\boldsymbol{*}} \pm$	27270* ±
upstream	137	579	414	539	822	480	550	410	1470
detectors									
(<i>Q_L</i> <1.5 <i>MeV/c</i>									
$Q_T < 6 MeV/c$)									

* - estimation

Goals of the experiment

- * The proposed experiment is the further development of the current DIRAC experiment at CERN PS. It aims to measure simultaneously the lifetime of $\pi^+ \pi^-$ atoms $(A_{2\pi})$, to observe πK atoms $(A_{\pi K})$ and to measure their lifetime using 24 GeV proton beam PS CERN and the upgraded DIRAC setup.
- ★ The precision of $A_{2\pi}$ lifetime measurement will be better than 6% and the difference $|a_0 a_2|$ will be determined within 3% or better.
- ★ The accuracy of $A_{\pi K}$ lifetime measurement will be at the level of 20% and the difference $|a_{1/2} a_{3/2}|$ will be estimated at the level of 10%.
- The pion-pion and pion-kaon scattering lengths have never been verified by experimental data with the sufficient accuracy. For this reason the proposed measurements will be a crucial check of the low energy QCD predictions and our understanding of the nature of the QCD vacuum.
- ★ The observation of the long-lived (metastable) $A_{2\pi}$ states is also considered with the same setup. This will allow us to measure the energy difference between *ns* and *np* states and to determine the value of $2a_0 + a_2$ in a model-independent way.

DIRAC II Set-up

