

Search for πK-atoms with DIRAC II

Yves Allkofer University Zurich (On behalf of the DIRAC collaboration) 15th September 2008

DIRAC II collaboration

Introduction to DIRAC

Chiral perturbation theory (ChPT) describes the hadronic interactions according to the SM below the chiral symmetry breaking scale.

ChPT gives precise prediction for the S-wave $\pi\pi/\pi K$ scattering length a_0 , a_2 , $a_{1/2}$ and $a_{3/2}$.

Many $\pi \pi \pi \pi K$ scattering analysis have been performed in the 70th by measuring the partial and total cross section (d σ /d Ω , σ) in a model dependent way to obtain $a_0, a_2, a_{1/2}$ and $a_{3/2}$.

DIRAC's approach is unique :

DIRAC measures the scattering length in a model independent way through the lifetime of $\pi\pi/\pi$ K-atoms which provides a **crosscheck of our understanding of low energy QCD**

DIRAC's main goals

- Lifetime measurement of $\pi^+\pi$ atoms (pionium) in a model-independent way with precision better than 6%, which gives a precision for $|a_0 a_2|$ better than 3%;
- Observation of π K⁺ and π ⁺K⁻ atoms.

The measurement of the lifetime with precision of 20% and difference of the πK scattering lengths $|a_{1/2} - a_{3/2}|$ with accuracy of about 10%.

πK scattering lengths

Model independent results are absent $\begin{array}{c}
K^+ p \rightarrow K^+ \pi^- \Delta^{++} \\
K^+ p \rightarrow K^+ \pi^+ n
\end{array}
\xrightarrow{\text{e.g. P.Estabrooks et al.,Nucl.Phys.B133(1978)490} \\
m_{\pi}(a_0^{1/2}) = 0.335 \pm 0.006 \\
m_{\pi}(a_0^{3/2}) = -0.14 \pm 0.07
\end{array}$

Different types of events

Event selections

- electrons rejection (N₂ Cherenkov counter, preshower detector)
- muons rejection (muon counter, preshower detector)
- pions rejection (Heavy gas Cherenkov counter)
- proton rejections for $K^+\pi^-$ candidates (aerogel Cherenkov counter)
- $|Q_1| < 20 \text{ MeV/c}$
- $|Q_T| < 8 \text{ MeV/c}$
- 3.75 < P(kaon) < 8 GeV/c
- 1.2 < P(pion) < 2.1GeV/c
- 5.1 < P(pion + kaon) < 10 GeV/c
- time difference between the left and right arm $|\Delta t| < 0.5$ ns

$\pi^- K^+$ analysis

$\pi\pi$ -pairs contamination

Contamination from $\pi\pi$ -pairs occurs due to inefficiencies in the heavy gas Čerenkov detector.

Variable of interest: Q_L longitudinal component of the relative momentum in the center of mass.

πp -pairs contamination

Locally π^-K^+ and π^-p -pairs have the same shape.

πp Coulomb-pairs contamination

The Coulomb correlation enhancement for low $|Q_L|$ is shifted outside the region of interest, i.e. for $|Q_L| < 20 \text{ MeV}/c$.

Summary Background description

• π -K⁺ Coulomb correlated background has an enhancement for low $|Q_L|$ on top a linear distribution.

- Coulomb uncorrelated background, i.e. non-Coulomb and accidentals pairs have a linear Q_L distribution with the same slope.
- no contaminations from $\pi\pi$ -pairs.
- only Coulomb uncorrelated background from π -p-pairs with locally the same slope in Q_L than for π -K⁺ pairs.

Background can be described using two distributions:

- Accidental pairs extracted from the data,
- Coulomb correlated pairs from MC simulation.

Coulomb correlated π -K+-pairs

 $|Q_L|$ shape for time correlated events (Coulomb pairs πK -pairs and π^-K^+ , π^-p non-Coulomb pairs) divided by accidental pairs.

Existence of Coulomb correlated π^-K^+ -pairs is demonstrated without the use of Monte Carlo.

Fit function and results

143±53 detected π^-K^+ -atomic pairs

$K^-\pi^+$ analysis

Similar to the K⁺ π ⁻ analysis one can extract K⁻ π ⁺-atoms.

29±15 detected π^+K^- -atomic pairs.

π^{-} K⁺ + π^{+} K⁻ atomic pairs

Ionization Probability

To measure the lifetime of π K-atoms, one has to determine the ionization probability P_{br} .

The number of Coulomb pairs (N^C) and produced atoms (N^A) are proportional:

$$N^{A} = k^{th} \cdot N^{C}(Q < 3.25 MeV/c), k^{th} = 0.615$$

The ionization probability (P_{br}) is the number ionized atoms (n^A) divided by the number of produced atoms:

$$P_{br} = \frac{n^{A}}{N^{A}} = \frac{n^{A}}{k \cdot N^{C} (Q < 3.25 MeV/c)}$$

$$P_{br} = (64 \pm 25)\%$$

Lifetime measurement

Summary and Outlook

Thanks to efficient particle identification from pioneering run 2007:

- observation of Coulomb correlation in πK pairs production in p-nucleus interactions.
- first evidence for production of π K-atoms.
- first experimental estimation of a lower limit of πK atoms lifetime.

Data taking in 2008 and 2009 with Ni-target and full setup should provide the 10% aimed accuracy.