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Introduction to DIRAC
Chiral perturbation theory (ChPT) describes the hadronic
interactions according to the SM below the chiral symmetry
breaking scale.

ChPT gives precise prediction for the S-wave π π/ πK
scattering length a0, a2, a1/2 and a3/2.

Many π π/ πK scattering analysis have been performed in the
70th by measuring the partial and total cross section (dσ/dΩ,
σ) in a model dependent way to obtain a0, a2, a1/2 and a3/2.

DIRAC’s approach is unique :

DIRAC measures the scattering length in
a model independent way through the

lifetime of ππ/πK-atoms which provides a
crosscheck of our understanding of

low energy QCD



DIRAC’s main goals
• Lifetime measurement of π+π- atoms (pionium) in a
model-independent way with precision better than
6%,which gives a precision for |a0 − a2| better than 3%;

• Observation of π- K+ and π+K- atoms.
The measurement of the lifetime with precision of 20% and
difference of  the πK  scattering lengths |a1/2− a3/2| with
accuracy of about 10%.



πK scattering lengths
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Dispersions relations

mπ (a0
1/2 ) = 0.335 ± 0.006

K + p→ K +π −Δ++

K + p→ K +π +n
K − p→ K −π −Δ++

K − p→ K −π +n

e.g.  P.Estabrooks et al.,Nucl.Phys.B133(1978)490

P.Buettiker et al,Eur.Phys.J C33 (2004) 409

V.Bernard et al.,Nucl.Phys. B357 (1991) 2757
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mπ (a0

1/2 − a0
3/2 )  0.238 ± 0.002

 
mπ (a0

1/2 − a0
3/2 )  0.269 ± 0.015

Model independent results are absent

mπ (a0
3/2 ) = −0.14 ± 0.07



DIRAC’s approach
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DIRAC II aims to measure 
the lifetime of πK-atoms 

 in order to check SU(3) ChPT

The dominant decay channel of πK-atoms

 J. Schweizer, Phys. Lett.
B 587 (2004) 33

 π
±K  →π 0 K

(−−)0

τ = 3.7 ± 0.4 fs



The DIRAC II spectrometer



Different types of events

πK atoms
NA (produced)

Accidental pairs
Nacc

Non Coulomb
pairs NnC

Coulomb pairs,
NC

p+π-

Time correlated
events

π0     K0 π     K± 

decay ionization

detected

SignalBackground

DIRAC looks for an
excess of  pairs with a very
low relative momentum Q Atomic pairs



Shape of the correlated
background : CC pairs

Shape of non Coulomb correlated
background: non-Coulomb pairs

and accidental pairs.

Shape of Coulomb correlated
pairs.

Data:
accidentals

Monte Carlo:
Coulomb pairs



Event selections
• electrons rejection (N2 Cherenkov counter, preshower detector)

• muons rejection (muon counter, preshower detector)

• pions rejection (Heavy gas Cherenkov counter)

• proton rejections for K+π- candidates (aerogel Cherenkov counter)

• |Ql|< 20 MeV/c

• |QT|<  8 MeV/c

• 3.75 < P(kaon) < 8 GeV/c

• 1.2 < P(pion) < 2.1GeV/c

• 5.1 < P(pion + kaon) < 10 GeV/c

• time difference between the left and right arm |Δt| < 0.5 ns



π- K+ analysis



ππ−pairs contamination
Contamination from ππ-pairs occurs due to inefficiencies in
the  heavy gas Čerenkov detector.

Selected ππ-pairs
(heavy gas counter in

coincidence)
reconstructed as π−K+-

pairs.

‘‘real’’ π−K+-pairs
correctly reconstructed.

Variable of interest: QL longitudinal component of
the relative momentum in the center of mass.



πp−pairs contamination

Selected π−p-pairs
(aerogel counter

in
anticoincidence)
reconstructed as
π− K+-pairs. ‘‘real’’ π−K+-pairs

correctly
reconstructed.

Region of interest for the πΚ analysis

Locally π−K+ and π−p-pairs have the same shape.



πp Coulomb-pairs contamination

Selected π−p-pairs
(aerogel in anti
coincidence)

correctly
reconstructed.

The Coulomb correlation enhancement for low |QL| is shifted
outside the region of interest, i.e. for |QL|< 20 MeV/c.

Selected π−p-pairs
(aerogel in anti
coincidence)

reconstructed as
π−Κ+-pairs.



Summary Background description
•  π−K+ Coulomb correlated background has an enhancement for
low |QL| on top a linear distribution.

• Coulomb uncorrelated background, i.e. non-Coulomb and
accidentals pairs have a linear QL distribution with the same
slope.

• no contaminations from ππ-pairs.

• only Coulomb uncorrelated background from π-p-pairs with
locally the same slope in QL than for π−K+ pairs.

Background can be described using two distributions:

• Accidental pairs extracted from the data,

• Coulomb correlated pairs from MC simulation.



Coulomb correlated π-K+-pairs
|QL| shape for time
correlated events
(Coulomb pairs πK-pairs
and π−K+, π−p non-
Coulomb pairs) divided
by accidental pairs.

Existence of Coulomb correlated π−K+-pairs is
demonstrated without the use of Monte Carlo.



Fit function and results

Coulomb correlated pairs

Non-Coulomb correlated pairs

Total background
Residuals

143±53 detected π−K+-atomic pairs



K-π+ analysis
Similar to the K+π- analysis one can extract K-π+-atoms.

29±15 detected π+K--atomic pairs.



π- K+ + π+ K- atomic pairs

π- K+   + π+K-

π- K++ π+ K- atomic pairs: 173 ±54

π- K+

Atomic pairs    Coulomb pairs

                           (QL<3.25 MeV/c)

 143±52               972 ±233

Atomic pairs    Coulomb pairs

                           (QL<3.25 MeV/c)

  29±15              165 ±108 

π+ K-



Ionization Probability

The number of Coulomb pairs (NC) and produced atoms (NA)
are proportional:

The ionization probability (Pbr) is the number ionized atoms (nA)
divided by the number of produced atoms:

Pbr =
nA

NA =
nA

k·NC(Q<3.25MeV/c)

NA =kth ·NC(Q<3.25MeV/c ), k th =0.615

Pbr=(64±25)%

To measure the lifetime of πK-atoms, one has to determine
the ionization probability Pbr.



Lifetime measurement
An atom while traveling through the
target can either:

• be (de-)exited (Pex): (ex: 2S-->2P)

• be ionized (Pbr):

• decay (Pdecay):

 π
±K  →π ± + K 

 π
±K  →π 0 + K 0

(−−)

Pbr=1-Pdecay-Pex

τ ≥1.5·10-15 s with 84% confidence level.



Summary and Outlook

Thanks to efficient particle identification from
pioneering run 2007:

• observation of Coulomb correlation in πK-
pairs production in p-nucleus interactions.
• first evidence for production of πK-atoms.
• first experimental estimation of a lower limit
of πK atoms lifetime.

Data taking in 2008 and 2009 with  Ni-target and
full setup should provide the 10% aimed accuracy.


