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Upgraded DIRAC experimental setup 



Energy Splitting between np - ns states in A2 atom

En ≡  Ens – Enp

En ≈  En + En
vac s En ~ 2a0 + a2

s

For   n = 2 E2 =   0.107 eV   from QED calculationsvac

E2 ≈   0.45 eV     numerical estimated value from ChPT
a0 = 0.220 ± 0.005
a2 =  0.0444 ± 0.0010

(2001) G. Colangelo, J. Gasser and H. Leutwyler

s

E2 ≈  0.56 eV

Energy splitting … in theory 

Measurement of τ and E allows one to obtain a0 and a2 

separately

Annihilation:  A2  00 1/τ=Wann ~ (a0 – a2)2
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Energy splitting … in practice 
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A and lives long...
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LabLab BγBγβF 



External magnetic and electric fields

≡ relative distance between
+ and  mesons in A2 atom

r

≡ electric field in the CM system
of an A2 atom

F

≡ laboratory magnetic fieldBLab

LabLab BγBγβF 

Atoms in a beam are influenced by external magnetic field
and the relativistic Lorentz factor 
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The initial state of the A atom in the 2p state after the target is written as :
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At the Hydrogen-like Hamiltonian H0 we add the field interaction V(r) and we study the time evolution of the atom:
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To account for the decay process, the imaginary parts of the Eigen-energy is introduced

The first order correction in the Energy for the new Eigen-states is proportional to :

/2mμ 

The states with m=-1,1 are not touched by the Electric field (perpendicular to the Atom’s velocity)

Energy splitting … in formulae 



The wave function assume now the form of a mixture between |2,p,0> and |2,s,0> states that 
evolves in time 
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Where f1 and f2  depend on (En=E2p-E2s) and M
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The probability for the A to remain in a state with n=2 :

and the probability to decay .. N(t) = 1-P(t)

N0 is extracted from the data already taken in 2010 with Berillim target and Nikel target
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The dependence of A2 lifetime in 2p-states eff from 
a strength of the electric field F 



The End, thank you



In inclusive processes, A2 are produced in 
s-states according to the following distribution

En ~ 1/n 3

Production of the long-lived 
states

• excitation in the target, 1s → 2p, 3p, 4p…     2s → 2p, 3p, 4p…
For Ni:  1s → 2p – 23%,  3p – 4%,    4p – 1.5%

2s → 2p – 32%,  3p – 8.6%, 4p – 1.8%
3s → 3p – 38%,  4p – 5.2%, 5p – 1.1%

• spontaneous, 2p → 1s 2p = 1.17 × 1011 s

3p

1s

2s

Hence: W1s = 83%     W2s = 10.4%    W3s = 3.1%     Wn > 3 s = 3.5%

3s
4p

1s

2s
 

Probabilities of ns to np transitions
Without taking into account Wns



Target

Z

Thickness 

μm

Br Σ(l ≥1) 2p0 3p0 4p0 Σ(l =1, m = 0) Σ(odd l)

04 50 2.63% 5.86% 1.05% 0.54% 0.20% 1.93% 4.49%

06 50 5.00% 6.92% 1.46% 0.51% 016% 2.52% 5.24%

13 20 5.28% 7.84% 1.75% 0.57% 0.18% 2.63% 6.05%

28 5 9.42% 9.69% 2.40% 0.58% 0.18% 3.29% 7.52%

78 2 18.8% 10.5% 2.70% 0.54% 0.16% 3.53% 8.10%

Probabilities of the A2π break-up (Br) and yields

of the long-lived states for different targets

provided the maximum yield of summed population

of the long-lived states: Σ(l ≥1)



(a) Probabilities of the A2π break-up (Br).

Summed population of the

long-lived states:

(b) np (m = 0) states; 

(c) all states with l > 0; 

(d) states with odd l.

The A2π lifetime was assumed

to be 3.0  10-15 s 

and the atom momentum 4.5 GeV/c. 

Yields of metastable atoms from Nickel target  Z = 28

as a function of the target thickness
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(a) Probabilities of the A2π break-up (Br).

Summed population of the

long-lived states:

(b) np (m = 0) states; 

(c) all states with l > 0; 

(d) states with odd l.

The A2π lifetime was assumed

to be 3.0  10-15 s 

and the atom momentum 4.5 GeV/c. 

Yields of metastable atoms from Platinum target  Z = 78

as a function of the target thickness



DIRAC new set-up 

Proton


