Investigation of $\pi^+\pi^-$ and πK - atoms

Pavla Doškářová

on behalf of DIRAC collaboration

Conference on Precision Physics and Fundamental Physical Constants

10.-14. 09. 2012 - Stará Lesná, Slovakia

pavla.doskarova@cern.ch (CTU)

Stará Lesná, Slovakia

10.-14. 09. 2012 1 / 18

Contents

1 Introduction

- General information on DIRAC
- DIRAC setup
- 2 ChPT predictions

3 $A_{\pi^+\pi^-}$ atom

- Production
- Detection
- Results

4 πK atom

- Observation
- 5 Long-lived atom
 - Data taking
- 6 Conclusion

DIRAC collaboration

Experiment DIRAC

DIRAC= DImeson Relativistic Atomic Complex

- using the proton beam (24GeV/c) from PS at CERN
- detector : a double-arm magnetic spectrometer
- over 90 physicists from 24 institutes and universities
- data collection from 2001 (since that time several upgrades)
- the main goals:
 - 1 measurement of the lifetime of $\pi^+\pi^-$ atom in the order of 3 fs with an accuracy of 10%
 - 2 after upgrade in 2006 \rightarrow first observation of $K\pi$ atoms, their lifetime and scattering length measurement
 - 3 long-lived atom observation

DIRAC setup

DIRAC experimental setup

ChPT predicts s-wave scattering lengths

 $\pi\pi$: $a_0 = 0.220 \pm 0.005$

$$a_2 = -0.0444 \pm 0.0010$$

 $a_0 - a_2 = 0.265 \pm 0.004$ ¹ G. Colangelo et al., Nucl. Phys. B 603 (2001) 125

$$\Rightarrow \tau = (2.9 \pm 0.1) \text{ fs} \qquad (\Gamma = \frac{1}{\tau} \sim k |a_0 - a_2|^2)$$

(r) approx.

 $a_{1/2} = 0.19 \pm 0.02$ $a_{3/2} = -0.05 \pm 0.02$ V.Bernard, N. Kaiser, U. Meissner 1991 $a_{1/2} - a_{3/2} = 0.238 \pm 0.002$

B. Kubis, U.G. Meissner 2002

2-loop approx.

 $\pi \mathbf{k}$

 $a_{1/2} - a_{3/2} = 0.267$

J. Bijnens, P.P. Dhonte, P.Talavera 2004

(Roy-Steiner equations)

 $a_{1/2} - a_{3/2} = 0.269 \pm 0.015$

P. Büttiker et al. 2004

$\Rightarrow \tau = (3.7 \pm 0.4)$ fs

¹ the indices 0 and 2 refer to the isospin of the $\pi\pi$ -system (1/2 and 3/2 refer to the isospin of the π K-system)

pavla.doskarova@cern.ch (CTU)

Production

Production of pionium

 $\pi^+\pi^-$ atom - Coulomb bound state of two pions produced in one proton-nucleus interaction (N_A) . Atomic pairs - ionised $\pi^+\pi^-$ atoms (n_⊿).

Background processes:

Coulomb pairs -produced in one proton-nucleus collision from fragmentation or short-lived resonances (ρ, ω, Δ) and exhibit Coulomb interaction in the final state (N_{CC}) .

Non-Coulomb pairs - produced in one proton-nucleus collision. At least one pion originates from a long-lived source (η, η') . No Coulomb interaction in the final state (N_{NC}).

Accidental pairs - produced in two independent proton-nucleus collisions. No Coulomb interaction in the final state (NAC).

pavla.doskarova@cern.ch (CTU)

Method of measurement

 $\tau(A_{2\pi})$ is too small to be measured directly.

When pionium $(A_{2\pi})$ moves through the target, following processes can occour:

- 1 Annihilation ... (strong interaction) $- A_{2\pi} \rightarrow \pi^0 + \pi^0$ (decay ratio 99.6%, $\tau \approx 3$ fs , $A_{2\pi} \rightarrow \gamma\gamma$ contributes 0.36%)
- 2 Excitation/Deexcitation ... (electromagnetic interaction)
 - transition between atomic levels
- **3** Break-up (ionisation) ... (electromagnetic interaction)
 - $A_{2\pi} \rightarrow \pi^+ + \pi^-$; characteristic "atomic pairs" (n_A)
 - Q_{CMS} <3MeV/c
 - in LAB E_+ ≈ E_- , small opening angle Θ <3mrad

Α atom

Caption:

 $|Q_I|$ fit projections of the $\pi^+\pi^-$ spectrum from data (dots) and simula- tion (MC lines). The top plot shows the experimental spectrum compared with the simulated background components (no pionium signal), with (solid line) and with-out (dotted line) Coulomb pairs (N_{CC}). The bottom plot shows the experimental | Q₁ | spectrum after background subtraction and the simulated pionium spectrum.

Break-up probability

an example of lifetime (2.9±0.3) fs

Calculation of P_{br}

$$P_{br} = rac{\mathbf{n}_A}{\mathbf{N}_A} = rac{\mathbf{n}_A}{k \, \mathrm{N}_{CC}}$$

- $\rightarrow n_A \dots$ number of ionized $A_{2\pi}$ atoms; $N_A \dots$ number of produced $A_{2\pi}$ atoms
- $\label{eq:constraint} \begin{array}{l} \rightarrow & \mbox{there exists a precise relation between N_A} \\ & \mbox{and the total number N_{CC} of Coulomb} \\ & \mbox{pairs with small Q :} \end{array}$

 $\mathrm{N}_{A} = k \; \mathrm{N}_{CC} \; \; k pprox 0.6 \ldots Q \leq 2 \; \text{MeV/c}$

- $\rightarrow P_{br}$ function of target material and thickness, atom lifetime τ and $A_{2\pi}$ momentum
- \rightarrow given lifetime \Rightarrow optimal target material

Published results on $\pi\pi$ atom: lifetime & scattering length

- the analysis of 2001-2003 data leads to the $A_{2\pi}$ lifetime $\tau = (3.15 \pm 0.28)$ fs
- the derived scattering length difference is $|a_0 a_2| = (0.2533 \pm 0.011)m_{\pi}^{-1}$

DIRAC	τ1s (10–15s)	a 0 – a 2	Reference
data	value stat syst theo* tot	value stat syst theo* tot	
2001	$2.91 \begin{array}{c} +0.45 \\ -0.38 \\ -0.49 \end{array} \begin{bmatrix} +0.49 \\ -0.62 \end{bmatrix}$	$0.264 \begin{array}{c} +0.017 & +0.022 \\ -0.020 & -0.009 \end{array} \begin{array}{c} +0.033 \\ -0.020 \end{array}$	PL B 619 (2005) 50
2001-03	$3.15 \begin{array}{c} +0.20 \\ -0.19 \\ -0.18 \end{array} \left[\begin{array}{c} +0.28 \\ -0.26 \end{array} \right]$	0.2533 ^{+0.0078} +0.0072 -0.0080 -0.0077 -0.0111	PL B 704 (2011) 24

* theoretical uncertainty included in systematic error

NA48	K-decay	a 0 – a 2				Defenses	
		value	stat	syst	theo	tot	Reference
2009	КЗπ	0.2571	±0.004	8±0.0029	0.0088		EPJ C64 (2009) 589
2010	Ke4 & K3π	0.2639	± 0.002	0 ± 0.0015			EPJ C70 (2010) 635

πK atom - motivation

- the study of electromagnetically bound hadronic pairs allows us to probe the low energy QCD
- the low energy interaction between the pion and the kaon (which contains the strange quark) is a proper tool to study the 3-flavour (u,d,s) structure of hadronic interaction or quark condensate in Chiral Perturbation Theory
- a measurement of the πK -atom lifetime is an important tool to determine the difference $|a_{1/2} a_{3/2}|$ of the s-wave πK -scattering lengths ²

²the indices 1/2 and 3/2 refer to the isospin of the πK -system

pavla.doskarova@cern.ch (CTU)

Stará Lesná, Slovakia

πK atom signal

277 \pm 52 π K atoms were observed with a significance of 5.3 σ		
numbers of πK atoms		
$\pi^- {oldsymbol K}^+ \ \pi^+ {oldsymbol K}^-$	157±43 120±29	

The ultimate goal of the DIRAC experiment is to measure the lifetime of $K\pi$ atoms with a precision of 20% (or better).

pavla.doskarova@cern.ch (CTU)

Stará Lesná, Slovakia

Long-lived atom - observation

- $-~\sim 6\%$ of the atoms $A_{2\pi},$ generated in the target, exit the target in a long-lived state $A^*_{2\pi}$ (mainly 1s \to np)
- the main part of these atoms are in the 2p-state
- the $A_{2\pi}^*(np)$ decay into two π^0 is forbidden ³ and $A_{2\pi}^* \to \pi^0 + \gamma$ is also strongly suppressed
- the lifetime of the $A_{2\pi}^*$ atom in the 2*p* state ($\tau_{2p} = 1.17 \times 10^{-11}$ s) is determined by the $2p \rightarrow 1s$ radiative transition with subsequent annihilation from 1*s* state ($\tau_{1s} \approx 3 \times 10^{-15}$ s) \Rightarrow the lifetime in *np*-states is about 10³ times larger than for *ns*-states

³the conservation law of the angular momentum

Long-lived atoms - "Lamb shift" measurement

− it is possible to measure **the** 2s - 2p **energy splitting** by exerting a magnetic field (\Rightarrow an electric field F) on the atom \Rightarrow measurement of the decay probability dependence on the field (mixing of *ns* and *np*-states in the electric field) ⁴

− electric field influences $A_{2\pi}^*$ lifetime $\tau_{eff} \Rightarrow$ "Lamb shift" ΔE_{2s-2p} ⇒S-wave pion-pion scattering length combination $2a_0 + a_2$

⁴ a small admixture of the 2s-state in the 2p-state \rightarrow faster decay; for B_0 =4 T and γ = 20 the decay rate increases more than a factor of two

• the lifetime of $A_{2\pi}$ atoms and the absolute value of difference of $\pi\pi$ scattering lengths were measured

 $au = (3.15 \pm 0.28) ext{ fs} \ |a_0 - a_2| = (0.2533 \pm 0.011) m_\pi^{-1}$

- the number of πK atoms detected by DIRAC corresponds to more than 5σ effect
- our goals for future:
 - **1** a measurement of the πK atom lifetime
 - 2 till the end of 2012 an observation of the $\pi\pi$ long-lived atoms $A_{2\pi}^*$

Thank you for your attention!

pavla.doskarova@cern.ch (CTU)

Stará Lesná, Slovakia

10.-14. 09. 2012 17 / 18

Pavla Doškářová The Czech Technical University

The Faculty of Nuclear Sciences and Physical Engineering The Department of Dosimetry and Application of Ionising Radiation Břehová 7, Prague 1 the Czech Republic Published results on $\pi\pi$ atom: lifetime & scattering length - II.

- based on more than 21000 breaking $A_{2\pi}$ atoms \Rightarrow statistical accuracy better than 10%
- to decrease systematic error, multiple scattering and an admixture of K⁺K⁻ and pp
 pairs are measured
- systematic error due to detector response is estimated

Long-lived atoms - few numbers

- as the best target has been found $100\mu m$ thick Be target
- the corresponding decay length is 5.7 cm for 2*p*-state, 19 cm for 3*p*-state, 44 cm for 4*p*-state, 84.5 cm for 5*p*-state (γ=16.1 in DIRAC)
- as the break-up foil has been chosen Pt foil with thickness of 2 μ m ⁵
- the shortest distance between the Be target and the Pt foil can be around 10 cm to avoid interactions of the primary beam halo with the foil

⁵the breakup probability of long-lived states is 0.94

Production of $A_{2\pi}$ in the Be target

2010	$N_A = 736 \pm 75$
2011	$N_A = 368 \pm 32$

Distribution over $|Q_L|$ of $\pi^+\pi^-$ pairs collected in 2010 (left) and in 2011 (right) with Beryllium target with the cut $Q_T < 1$ MeV/c. Experimental data (points with error bars) have been fitted by a sum of the simulated distribution of "Coulomb" and "non-Coulomb" pairs (dashed line).

The dependence of $A_{2\pi}$ lifetime in 2*p*-state τ_{eff} from a strength of the electric field F

$$au_{eff} = rac{ au_{2p}}{1+120|\xi|^2}$$
 where $|\xi|^2 \approx rac{F^2}{(E_{2p}-E_{2s})}$

$$B_{Lab} = 4 \text{ Tesla} \begin{cases} \gamma = 20, \quad |\xi| = 0.1 \quad \Rightarrow \quad \tau_{\text{eff}} = \frac{\tau_{2p}}{2.2} \\ \gamma = 40, \quad |\xi| = 0.2 \quad \Rightarrow \quad \tau_{\text{eff}} = \frac{\tau_{2p}}{6} \end{cases}$$

SPS(450GeV): yield of $A_{2\pi}$ and $A_{\pi K}$ will increase of a factor 20 per proton-nucleus interaction.

Simulation of the permanent magnet influence

Simulated "atomic pairs" from long-lived atoms (light area) over Q_Y above the background of $\pi^+\pi^-$ pairs produced in Beryllium target with cuts $|Q_X| < 1$ MeV/c, $|Q_L| < 1$ MeV/c (hatched area). In left side without the magnet and in right side with magnet used in 2011

Simulated distribution of $\pi^+\pi^-$ pairs over Q_Y produced in Beryllium target with cuts $|Q_X| < 1 \text{ MeV/c}, |Q_L| < 1 \text{ MeV/c}.$ The events without magnet (solid line) are distributed around 0 and events with the new magnet are shifted by 15 MeV/c (dashed line)

pavla.doskarova@cern.ch (CTU)

Stará Lesná, Slovakia