First πK atom lifetime measurement and recent results from the DIRAC experiment

Mikhail Zhabitsky for the DIRAC Collaboration (CERN PS-212)

Joint Institute for Nuclear Research, Dubna

CERN, the European Organization for Nuclear Research

Kraków, MESON 2014

→ < ∃ →</p>

3

The DIRAC Collaboration

- 1998–2003 Lifetime measurement of $\pi^+\pi^-$ -atoms ($A_{2\pi}$)
- 2007–2012 Search for and lifetime measurement of $\pi^{\pm} \acute{K}^{\mp}$ -atoms ($A_{\pi K}$)

68 physicists from Czechia, Italy, Japan, Romania, Russia, Spain and Switzerland

Use double-arm spectrometer at CERN Proton Syncrotron (24 GeV/c)

Contents

(1) $\pi^{\pm}K^{\mp}$ atoms

- Theory and experimental method
- The DIRAC spectrometer
- \bullet First evidence and lifetime measurement of $\pi^\pm K^\mp$ atoms

Further work

- Better precision for πK scattering lengths
- Progress in pionium lifetime measurement
- Long-lived $\pi^+\pi^-$ atoms

Results and Outlook

E + 4 E + 1

3

Theory and experimental method The DIRAC spectrometer First evidence and lifetime measurement of $\pi^\pm \kappa^\mp$ atoms

πK atoms lifetime

Hydrogen-like atoms, formed by π and K mesons, $a_B = 249$ fm, $p_B = 0.79$ MeV/c Lifetime is limited by charge-exchange process

$$\begin{aligned} \pi^{+} K^{-} &\to \pi^{0} \bar{K}^{0} \quad \text{or} \quad \pi^{-} K^{+} \to \pi^{0} K^{0} \\ \frac{1}{\tau} &= \frac{8}{9} \alpha^{3} \mu^{2} p \left(a_{0}^{1/2} - a_{0}^{3/2} \right)^{2} \left(1 + \delta_{K} \right) \end{aligned}$$

[S.Bilenky et al., Sov. J. Nucl. Phys. 10 (1969) 469] [J. Schweizer, Phys. Lett. B 587 (2004) 33]

SU(3) ChPT predictions [J. Bijnens et al. JHEP 0405 (2004) 036]:

$$\begin{aligned} \mathcal{M}_{\pi} a_{0}^{-} &= \mathcal{M}_{\pi} \frac{1}{3} \left(a_{0}^{1/2} - a_{0}^{3/2} \right) = \\ &= 0.071 \; (CA) \; \rightarrow \; 0.0793 \; (1l) \; \rightarrow \; 0.089 \; (2l) \; \rightarrow \; 0.090 \pm 0.005 \; (\text{dis}) \end{aligned}$$

[P.Büttiker et al., Eur. Phys. J. C33 (2004) 409]:

 $M_{\pi}a_{0}^{-} = 0.090 \pm 0.005, \quad \delta_{K} = 0.040 \pm 0.022 \quad \Rightarrow \quad \tau = (3.5 \pm 0.4) \cdot 10^{-15} \text{ s}$

 Lattice calculations
 $M_{\pi}a_0^- = 0.077 \pm 0.001^{+0.002}_{-0.005}$

 [NPLQCD, Phys. Rev. D74 (2006) 114503]
 $M_{\pi}a_0^- = 0.077 \pm 0.001^{+0.002}_{-0.005}$

 [Z.Fu, Phys. Rev. D85 (2012) 074501]
 $M_{\pi}a_0^- = 0.0777 \pm 0.0013\pm?$

 [PACS-CS, Phys. Rev. D89 (2014) 054502]
 $M_{\pi}a_0^- = 0.081 \pm 0.006 \pm 0.012$

Theory and experimental method The DIRAC spectrometer First evidence and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Experimental way to observe πK atoms

• Annihilation:
$$A_{\pi K} \to \pi^0 K^0$$
 or $\pi^0 \overline{K^0}$

$$\lambda_{anh} = \beta \gamma \tau \approx 20 \ \mu m$$
 at $\gamma \approx 20$

Interaction of $A_{\pi K}$ with target atoms [L. Nemenov, Sov. J. Nucl. Phys. 41 (1985) 629

• Excitation/de-excitation of $A_{\pi K}$

 $\lambda_{\rm int}^{\rm 1S} pprox$ 50 $\mu{
m m}$ in Ni

• $A_{\pi K}$ ionization \Rightarrow characteristic "atomic" pairs $\pi^{\pm} K^{\mp} (n_A)$:

 $q_{ ext{CMS}} < 3 ext{ MeV}/c \ \Rightarrow \ ext{in laboratory frame} \left[egin{array}{c} E_+ pprox E_- \ \Theta < 3 ext{ mrad} \end{array}
ight.$

• Unique $P_{\text{ion}} = \frac{n_A}{N_A} = P_{\text{ion}}(\tau)$ relation

Theory and experimental method The DIRAC spectrometer First evidence and lifetime measurement of $\pi^\pm \kappa^\mp$ atoms

Experimental way to observe πK atoms

• Annihilation:
$$A_{\pi K} \rightarrow \pi^0 K^0$$
 or $\pi^0 \overline{K^0}$

$$\lambda_{\mathsf{anh}} = \beta \gamma \tau pprox 20 \ \mu \mathsf{m}$$
 at $\gamma pprox 20$

Interaction of $A_{\pi K}$ with target atoms [L. Nemenov, Sov. J. Nucl. Phys. 41 (1985) 629]

• Excitation/de-excitation of $A_{\pi K}$

 $\lambda_{\rm int}^{\rm 1S} pprox$ 50 $\mu{\rm m}$ in Ni

• $A_{\pi K}$ ionization \Rightarrow characteristic "atomic" pairs $\pi^{\pm} K^{\mp}$ (n_A) :

$$q_{\mathsf{CMS}} < 3 \; \mathsf{MeV}/c \; \Rightarrow \; \mathsf{in} \; \mathsf{laboratory} \; \mathsf{frame} \left[egin{array}{c} E_+ pprox E_- \\ \Theta < 3 \; \mathsf{mrad} \end{array}
ight.$$

• Unique $P_{\text{ion}} = \frac{n_A}{N_A} = P_{\text{ion}}(\tau)$ relation

 $\pi^{\pm} K^{\mp}$ atoms Further work Results and Outlook Theory and experimental method The DIRAC spectrometer First evidence and lifetime measurement of $\pi^\pm \kappa^\mp$ atoms

 $P_{\text{ion}} = P_{\text{ion}}(\tau)$

 $A_{\pi K}$ propagation in matter: annihilation/ionisation/excitation

 Total/excitation cross-sections in Born approximation [St. Mrowczynski, 1986, Phys. Rev. A33, 1549]
 [L. Afanasyev, A. Tarasov, 1996, Sov. J. Nucl. Phys 59, 2130]

伺下 イヨト イヨト

- Glauber approximation + ionization cross-sections
 [T. Heim et al., 2001, J. Phys. B34, 3763]
- Multiphoton exchange
- Density matrix formulas

[O. Voskresenskaya, 2003, J. Phys. B36, 3293]

• Direct calculation of $P_{ion}(\tau)$ [M. Zhabitsky, 2008, Sov. J. Nucl. Phys 71, 1040]

Theory and experimental method The DIRAC spectrometer First evidence and lifetime measurement of $\pi^\pm \kappa^\mp$ atoms

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへで

$A_{\pi K}$ generation

$$p + Ni \rightarrow \dots \text{ at } 24 \text{ GeV}/c$$
• Atoms are generated in *nS*-states
$$|\Psi_{nS}(0)|^{2} \propto \frac{1}{n^{3}}:$$
15: 83%, 25: 10%, ...
Other sources of inclusive $\pi^{\pm}K^{\mp}$ -pairs:
• Coulomb pairs
$$N_{A} = kN_{C}(q < q_{0})$$

$$A_{C}(q) = \frac{4\pi\mu_{\pi K}\alpha/q}{1 - \exp(-4\pi\mu_{\pi K}\alpha/q)}$$
• Non-correlated pairs
$$P_{ion} = \frac{n_{A}}{N_{A}} = \frac{n_{A}}{kN_{C}}$$

$$\Rightarrow P_{ion} = P_{ion}(\tau)$$

$$K^{+}$$

Theory and experimental method The DIRAC spectrometer First evidence and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

The DIRAC spectrometer

Rel. momentum resolution in c.m.s.

 $\begin{array}{l} \sigma_p/p \approx 3 \cdot 10^{-3} \\ p_{\pi} \in [1.2, 2.5] \ \text{GeV}/c \\ p_K \in [4.0, 8.9] \ \text{GeV}/c \\ \sigma_{Q_x} \approx \sigma_{Q_y} \approx 0.2 \ \text{MeV}/c \\ \sigma_{Q_t} \approx 0.85 \ \text{MeV}/c \end{array}$

Theory and experimental method The DIRAC spectrometer First evidence and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

3

First evidence for $\pi^{\pm}K^{\mp}$ atoms

Thin Pt target 28μ m, 2007:

$$n_A(\pi^-K^+) = 143 \pm 53, \quad n_A(\pi^+K^-) = 29 \pm 15$$

Evidence for πK -atoms observation with DIRAC [Adeva et al. (DIRAC Collaboration) Phys. Lett. B674 (2009) 11]

Theory and experimental method The DIRAC spectrometer First evidence and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

Lifetime measurement of $\pi^{\pm}K^{\mp}$ atoms

Ni targets 98 μ m and 108 μ m, 2008–2010 Two-dimensional (Q_T, Q_L) fit of experimental data:

 $\pi^{\pm} K^{\mp}$ atoms Further work Results and Outlook Theory and experimental method The DIRAC spectrometer First evidence and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

(日本) (日本) (日本)

э.

Lifetime measurement of $\pi^{\pm}K^{\mp}$ atoms

$$n_{A}(\pi^{-}K^{+} + \pi^{+}K^{-}) = 178 \pm 49$$

$$\tau = \left(2.5 \begin{array}{c} +3.0\\ -1.8 \end{array}\right|_{\text{stat}} \begin{array}{c} +0.3\\ -0.1 \end{array}\right|_{\text{syst}} \cdot 10^{-15} \text{s} = \left(2.5 \begin{array}{c} +3.0\\ -1.8 \end{array}\right|_{\text{tot}}\right) \text{fs}$$

[DIRAC Collaboration, subm. Phys. Lett. B (2014), CERN-PH-EP-2014-030, arXiv:1403.0845]

 $\pi^{\pm}K^{\mp}$ atoms Further work Results and Outlook Theory and experimental method The DIRAC spectrometer First evidence and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

3

πK scattering lengths

[DIRAC Collaboration, subm. Phys. Lett. B (2014), CERN-PH-EP-2014-030, arXiv:1403.0845]

Theory and experimental method The DIRAC spectrometer First evidence and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

□ + * E + * E + E - の < (*)

πK scattering lengths: experimental results

Inelastic Kp or Kn-scattering with πK in a final state:

$a_{1/2}m_{\pi}$	$a_{3/2}m_{\pi}$	
0.237	-0.074	[Nuovo Cimento 41A (1977) 73]
0.240 ± 0.002	-0.05 ± 0.06	[Nuovo Cimento 43A (1978) 376]
0.13 ± 0.09	-0.13 ± 0.03	[J.Phys.G6 (1980) 583]

 $|a_0^-|m_\pi = \frac{1}{3}|a_{1/2} - a_{3/2}|m_\pi = 0.11^{+0.09}_{-0.04}$ [DIRAC, arXiv:1403.0845]

伺下 くヨト くヨト

3

Work towards better precision in $A_{\pi K}$ lifetime measurement

• to include events with high background in forward detectors ($\sim 1/3$ of statistics)

• Combination of Pt and Ni measurements Pt: $\tau > 0.8 \cdot 10^{-15}$ s (CL=0.9) Ni: $\tau = \left(2.5 \begin{array}{c} +3.0 \\ -1.8 \end{array}\right)_{tot} \cdot 10^{-15}$ s

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э.

Progress in pionium lifetime measurement

	2001 ¹	2001-2003 ²	2008-2010
n _A stat. error	6530 ±294	21277 ±407	>22000
$ au$, 10^{-15} s stat. error, 10^{-15} s syst. error, 10^{-15} s tot. error, 10^{-15} s	$2.91 \\ +0.45 \\ -0.38 \\ +0.19 \\ -0.49 \\ +0.49 \\ -0.62$	3.15+0.20-0.19+0.20 *-0.18+0.28-0.26	
$ a_0^0-a_0^2 ,\ m_{\pi^+}^{-1}$ tot. error, $m_{\pi^+}^{-1}$	0.264 +0.033 -0.020	0.253 +0.011 -0.011	

¹ [DIRAC Collaboration, Phys. Lett. B619 (2005) 50]

² [Adeva et al. (DIRAC Collab.), Phys. Lett. B704 (2011) 24]

* Systematic uncertainty is dominated by multiple scattering in the target and in forward detectors — we have performed a direct measurement of scattering in them

Experimental results on (a_0, a_2)

- K_{e4} decay $(K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu_{e})$ $a_{0} = 0.233 \pm 0.016 \pm 0.007(syst)$ $a_{2} = -0.0471 \pm 0.011 \pm 0.004(syst)$ [NA48, Eur. Phys. J. C54 (2008) 411]
- Cusp-effect $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ $a_{0} - a_{2} = 0.2571 \pm 0.0048(\text{stat}) \pm 0.0029(\text{syst}) \pm 0.0088(\text{theor})$ [NA48/2, EPJ C64 (2009) 589]
- $\pi^+\pi^-$ atoms $|a_0 - a_2| = 0.2533 + 0.0078 |_{stat} + 0.0072 |_{syst}$ [DIRAC, Phys. Lett. B704 (2011) 24]
- $K_{e4} \& K \to 3\pi$ $a_0 - a_2 = 0.2639 \pm 0.0020(\text{stat}) \pm 0.0015(\text{syst}))$ [NA48/2, EPJ C70 (2010) 635]
- ChPT
 - $a_0 = 0.220 \pm 0.005, \; a_2 = -0.0444 \pm 0.0010$
 - [G. Colangelo et al., Nucl. Phys. B 603 (2001) 125]

We expect progress both by experiments and in theory [see Peter Stoffer, MESON 2014]

伺 ト イヨ ト イヨ ト ・ ヨ ・ つ へ ()・

Experimental results on (a_0, a_2)

- K_{e4} decay $(K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu_{e})$ $a_{0} = 0.233 \pm 0.016 \pm 0.007(syst)$ $a_{2} = -0.0471 \pm 0.011 \pm 0.004(syst)$ [NA48, Eur. Phys. J. C54 (2008) 411]
- Cusp-effect $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ $a_{0} - a_{2} = 0.2571 \pm 0.0048(\text{stat}) \pm 0.0029(\text{syst}) \pm 0.0088(\text{theor})$ [NA48/2, EPJ C64 (2009) 589]
- $\pi^+\pi^-$ atoms $|a_0 - a_2| = 0.2533 + 0.0078 |_{stat} + 0.0072 |_{syst}$ [DIRAC, Phys. Lett. B704 (2011) 24]
- $K_{e4} \& K \to 3\pi$ $a_0 - a_2 = 0.2639 \pm 0.0020(\text{stat}) \pm 0.0015(\text{syst}))$ [NA48/2, EPJ C70 (2010) 635]
- ChPT
 - $a_0 = 0.220 \pm 0.005, \; a_2 = -0.0444 \pm 0.0010$
 - [G. Colangelo et al., Nucl. Phys. B 603 (2001) 125]

We expect progress both by experiments and in theory [see Peter Stoffer, MESON 2014]

Method to observe long-lived $\pi^+\pi^-$ atoms

The observation of long-lived states of $\pi^+\pi^-$ atoms opens the possibility to measure the energy difference between *ns* and *np* states $\Delta E^{(ns-np)}$ and the value of $\pi\pi$ scattering lengths $|2a_0 + a_2|$.

3

$A_{2\pi}$ and $A_{\pi K}$ production on PS and SPS at CERN

The ratio of yields at the proton momentum 450 GeV/c and angle 4° (CERN SPS) to the yields at the proton momentum 24 GeV/c and angle 5.7° (CERN PS):

$$egin{array}{ccc} A_{\pi^+ K^-} & 35 \ A_{K^+ \pi^-} & 27 \ A_{2\pi} & 17 \end{array}$$

Results and Outlook

• Evidence for $\pi^{\pm}K^{\mp}$ atoms on Pt and Ni targets

Pt:
$$n_A = 173 \pm 54$$
, Ni: $n_A = 178 \pm 49$

• First measurement of
$$A_{\pi K}$$
 lifetime

$$\tau = \left(2.5 \left.^{+3.0}_{-1.8}\right|_{\rm tot}\right) {\rm fs}$$

Main tasks for DIRAC:

- Analysis of Pt and Ni data to achieve $A_{\pi K}$ observation
- Improve precision in pionium lifetime measurement
- \bullet Observation of long-lived states of $\pi^+\pi^-$ atoms
- Looking forward higher beam momenta (SPS 450 GeV/c)

э

 $\pi^{\pm}\kappa^{\mp}$ atoms Further work Results and Outlook

$(a_0^0, a_0^2) \pi \pi$ scattering lengths

< 注入 < 注入

2

Quark condensate in ChPT

$$M_{\pi}^{2} = (m_{u} + m_{d}) \lim_{m_{u}, m_{d} \to 0} \frac{|\langle 0|\bar{u}u|0\rangle|}{F_{\pi}^{2}} + O(m_{q}^{2}) = M^{2} + O(m_{q}^{2})$$

[M. Gell-Mann, R.G. Oakes, B. Renner, Phys. Rev. 175 (1968) 2195]

$$M_{\pi}^{2} = M^{2} - \frac{I_{3}}{32\pi^{2}F^{2}}M^{4} + O(M^{6})$$

▲ 문 ▶ | ▲ 문 ▶

2