Precision Electroweak Measurements and Fits

Martin W. Grünewald

University College Dublin, Ireland

APS Denver, 3 May 2004

Overview on precision measurements

Tests of the electroweak Standard Model

The mass of the Higgs boson

Conclusions

Thanks to the members of the <u>LEP electroweak working group</u>, the <u>Tevatron electroweak working group</u>, and the D \emptyset , CDF, SLD, OPAL, L3, DELPHI, ALEPH, E-158, NuTeV, ... experiments!

http://tevewwg.fnal.gov

http://www.cern.ch/LEPEWWG

Very high Q² physics at LEP, SLC, and the Tevatron: More than 1000 measurements with (correlated) uncertainties Reduced to 17 precision electroweak observables

Top quark, W boson:

- 1 Top quark mass (Tevatron)
- 2 W boson mass and width (LEP-2, Tevatron)

Z boson (LEP-1,SLD):

- 5 Z lineshape and leptonic forward-backward asymmetries
- 2 Polarised leptonic asymmtries P_{τ} , $A_{LR(FB)}$
- 6 Heavy flavour results (Z decays to b and c quarks)
- 1 Inclusive hadronic charge asymmetry

SM: Each observable calculated as a function of: $\Delta \alpha_{had}, \alpha_{s}(M_{Z}), M_{Z}, M_{top}, M_{Higgs}$ (and G_F) $\Delta \alpha_{had}$: hadronic vacuum polarisation [0.02761±0.00036] $\alpha_{s}(M_{Z})$: given by Γ_{had} and related observables M_Z: constrained by LEP-1 lineshape

Precision requires 1st and 2nd order electroweak and mixed radiative correction calculations (QED to 3rd) M_{top}, M_{Higgs} enter through electroweak corrections (~ 1%)!

Calculations by programs TOPAZ0 and ZFITTER

Mass of the Top Quark

Measurement	M _{top} [GeV/c ²]	Tevatron (CDF, D \varnothing):
CDF di-I	167.4 ± 11.4	$p \not p \rightarrow t t X, t t \rightarrow b b W W$
DØ di-I	- 168.4 ± 12.8	$W \rightarrow qq$, lv
CDF I+j	176.1 ± 7.3	Preliminary Run-II results
DØ I+j	• 180.1 ± 5.3	•
CDF all-j -	186.0 ± 11.5	Systematic uncertainties
	$\chi^2 / dof = 2.6 / 4$	Jet energy scale (2-5 GeV) -
TEVATRON Run-I	178.0 ± 4.3	will reduce with more data
150 175 M _{top} [Ge	200 V/c ²]	Signal model (1-3 GeV) Background model (~2 GeV) MEs, PDFs, MC generators

Run-I final: $M_{top} = 178.0 \pm 2.7$ (stat.) ± 3.3 (syst.) GeV Run-II expectation: $\delta M_{top} < 2.5$ GeV Tevatron (CDF, DØ): $p p \rightarrow WX, W \rightarrow ev, \mu v$

Transverse mass

 $m_T^2 = 2E_T^e E_T^v \cos \phi(e, v)$

Final Run-I combination No Run-II results yet

Uncertainties dominated by: Statistics Lepton energy scale will reduce with more data Then: Signal model PDFs, gluon radiation QED corrections in $W \rightarrow Iv$

Run-II expectation: $\delta M_W < 25 \text{ MeV}$

W Boson Mass and Width

LEP-2: $e^+e^- \rightarrow W^+W^-$

 \rightarrow qqqq, qqlv, lvlv Invariant mass M_{inv} Preliminary results

Potentially large FSI systematics (BE,CR) in the qqqq channel: M_W average dominated by qqlv channel

Mass difference (calculated without FSI errors): $M_W(qqqq) - M_W(qqlv) = 22 \pm 43 \text{ MeV}$ Very good agreement between all six experiments:

Correlation M_W - Γ_W : -0.07

Small Higgs-boson mass

The Z Lineshape

The Forward-Backward Asymmetry at the Z

Polarised Leptonic Asymmetries at the Z

Effective Leptonic Coupling Constants

Heavy Flavour Results at the Z

Heavy Flavour Results at the Z

Heavy Flavour Results at the Z

Effective electroweak mixing angle: $sin^2\Theta_{eff} = (1-g_{VI}/g_{AI})/4$ $= 0.23150 \pm 0.00016$ $\chi^2/ndof = 10.5/5$ [6.2%]

A-posteriori observation: 0.23113 ± 0.0021 leptons 0.23214 ± 0.0027 hadrons 3.0σ difference

But is really: A_I(SLD) vs. A_{fb}b(LEP) 2.9 σ difference

Top-Higgs Bands

Heavy Particle Masses: Top Quark

Predicted M_{top} in very good agreement with measurement Measured M_{top} more than twice as precise as prediction

Heavy Particle Masses: W Boson

Predicted and measured M_W within ~1 σ Measured M_W not yet as precise as prediction

Subject of ongoing experimental and theoretical work: New measurements by CMD-2, KLOE, BABAR/BELLE, CLEO-c Discrepancy between results derived from τ and e⁺e⁻ data

Global Standard Model Analysis

Fit results:	Correlations:
$\Delta \alpha$ had = 0.02768 ± 0.00035	1.00
$\alpha_{s}(M_{Z}) = 0.1186 \pm 0.0027$	-0.02 1.00
$M_Z = 91.1873 \pm 0.0021 \text{ GeV}$	-0.01 -0.02 1.00
$M_{top} = 178.1 \pm 3.9 \text{ GeV}$	-0.06 0.10 -0.03 1.00
$\log_{10}M_{\rm H} = 2.05 \pm 0.20$	-0.48 0.16 0.06 0.67 1.00
$M_{Higgs} = 113^{+62}_{-42} \text{ GeV}$ $\Delta \alpha_{had} \text{marginally improved}$ $\alpha_{s}(M_{Z}) \text{one of the best}$ $M_{Z} \text{unchanged}$ $M_{top} \text{error improved by 10\%}$	Strong correlations with: fitted $\Delta \alpha_{had}$ - reduced to -0.18 with pQCD $\Delta \alpha_{had}$ fitted M _{top} - 25% shift in M _{Higgs} for 4 GeV shift in meas. M _{top}

M_{top} measurement crucial!

Global Standard Model Analysis

M_{Higgs} = 113⁺⁶²₋₄₂ GeV Incl. theory uncertainty: M_{Higgs} < 237 GeV (95%CL)

does not include:

Direct search limit (LEP-2): M_{Higgs} > 114 GeV (95%CL)

Renormalise probability for M_H>113 GeV to 100%: M_{Higgs} < 269 GeV (95%CL)

Higgs Sensitivities and Constraints

Global Standard Model Analysis

Electron-nucleus atomic parity violation (APV) in atomic transitions: Parity-violating t-channel contribution due to γ/Z interference Weak charge Q_{W} of the nucleus (Z protons, N neutrons) $Q_W(Z,N) = -2 [(2Z+N)C_{1U} + (Z+2N)C_{1d}]$ with $C_{1q} = 2g_{Ae}g_{Va}$ at $Q^2 \rightarrow 0$ (q=u,d) $Q_{W}(Cs) = -72.84 \pm 0.49$ SM fit: -72.91 ± 0.04 Møller scattering (e^-e^-) with polarised e^- beam (E-158 experiment):

Parity-violating t-channel contribution due to γ/Z interference $A_{PV} = (\sigma_R - \sigma_L)/(\sigma_R + \sigma_L) \propto Q_W(e^-) = -4g_{Ae}g_{Ve}$ at $Q^2 \sim 0.03 \text{ GeV}^2$

 $sin^2\Theta_{eff}(Q=M_Z) = 0.2296 \pm 0.0023$ SM fit: 0.2314 ± 0.0001

Paschos-Wolfenstein relation (iso-scalar target):

$$R_{-} = \frac{\sigma_{NC}(v) - \sigma_{NC}(\overline{v})}{\sigma_{CC}(v) - \sigma_{CC}(\overline{v})} = 4g_{Lv}^{2} \sum_{q_{v}} \left[g_{Lq}^{2} - g_{Rq}^{2}\right] = \rho_{v}\rho_{ud} \left[\frac{1}{2} - \sin^{2}\theta_{W}^{(on-shell)}\right]$$

+ electroweak radiative corrections

Effective couplings: g_L , g_R at $\langle Q^2 \rangle \sim 20 \text{ GeV}^2$ Historically result quoted in terms of: $\sin^2\Theta_W = 1 \cdot (M_W/M_Z)^2$ Factor two more precise than previous v N world average

Quote result in terms of effective couplings, not $sin^2\Theta_W$ nor $M_W!$

Various explanations:

New physics:

Z', contact interactions, lepto-quarks, new fermions,

neutrino oscillations, . . .

But likely rather old physics:

Theory uncertainty (QED, LO PDFs)

Isospin violating PDFs, sea asymmetry

Wealth of high-precision measurements: Many with high sensitivity to radiative corrections

Most measurements agree with expectations: Successful test of SM loop corrections Stringent constraints on new physics beyond the SM But have two ~3-sigma effects:

Spread in $\sin^2 \Theta_{eff}$ at the Z pole, and NuTeV's result SM Higgs boson seems to be "around the corner - sort of"

Future:

- Precise theoretical calculations including theory uncertainties
- Improved measurements of top, W, $\Delta \alpha_{had}$, sin² Θ_{eff}
- Check Higgs-mass prediction!