Precision Tests of the Standard Model

Martin W. Grünewald University College Dublin Ireland

EPS HEP, Lisbon, 22 July 2005

Overview on precision measurements

Tests of the electroweak Standard Model

The Standard Model Higgs boson

Conclusions

Thanks to the members of the LEP electroweak working group, the Tevatron electroweak working group, and the D \emptyset , CDF, SLD, OPAL, L3, DELPHI, ALEPH, E-158, NuTeV, ... experiments!

http://tevewwg.fnal.gov

http://www.cern.ch/lepewwg

Very high Q² physics at LEP, SLC, and the Tevatron: More than 1000 measurements with (correlated) uncertainties Combined to 17 precision electroweak observables

- Z-pole physics (LEP-1,SLD):
 - 5 Z lineshape and leptonic forward-backward asymmetries
 - 2 Polarised leptonic asymmetries P_{τ} , $A_{LR}(FB)$
 - 1 Inclusive hadronic charge asymmetry
 - 6 Heavy quark flavour results (Z decays to b and c quarks)

W boson & top quark physics – ongoing at Tevatron's Run-II:

- 2 W boson mass and width (LEP-2, Tevatron)
- 1 Top quark mass (Tevatron)

Top Physics

Top-Quark Mass - Run-I

Tevatron (CDF, DØ): Final Run-I combination

- Systematic uncertainties dominated by:
- Jet energy scale (2-5 GeV) will reduce with more data Signal model (1-3 GeV) Background model (~2 GeV) MEs, PDFs, MC generators

Run-I final: $M_{top} = 178.0 \pm 2.7$ (stat.) ± 3.3 (syst.) GeV Run-II expectation: $\delta M_{top} < 2.5$ GeV

Top-Quark Mass - Run-II

Reduction of JES systematics: In-situ calibration using W-mass constraint

In 2005:

Each experiment (will be) better than the Run-I average!

Separate final states:

- 165.0±5.8 GeVdi-leptons173.5±3.0 GeVlepton+jets
- 185.0±10.9 GeV all-jets
- Final state interactions (CR)?

Run-II prel.: $M_{top} = 172.7 \pm 1.7$ (stat.) ± 2.4 (syst.) GeV

6

W Boson - Mass and Width

Potentially large FSI systematics (BE,CR) in the qqqq channel: M_W average dominated by qqlv channel (qqqq: 9.5% \rightarrow 16%) Mass difference (calculated without FSI errors): M_W (qqqq) – M_W (qqlv) = 21 ± 42 MeV

Good agreement between all six experiments:

Correlation M_W - Γ_W : -0.06

Heavy Flavour Results at the Z-Pole

 ± 0.0030

± 0.0016

 ± 0.0035

 ± 0.020

 ± 0.027

Finally: really final HF results available

 $R_{h} = \Gamma_{h}/\Gamma_{had}$ 0.21629 ± 0.00066 $R_c = \Gamma_c / \Gamma_{had}$ 0.1721 $A_{fb}(b) = \frac{3}{4} A_e A_b$ 0.0992 $A_{fb}(c) = \frac{3}{4} A_e A_c$ 0.0707 0.923 Ab 0.670 A_C

+ small correlations

Heavy-flavour combination: χ^2 /ndof = 53/(105-14) low!

Central values very consistent Several systematic tests dominated by MC statistics

Asymmetries statistics dominated

Heavy Flavour Results at the Z-Pole

Comparison of all Z-Pole Asymmetries

Effective electroweak mixing angle: $sin^2\Theta_{eff} = (1-g_{VI}/g_{AI})/4$ $= 0.23153 \pm 0.00016$ $\chi^2/ndof = 11.8/5 [3.7\%]$

Subsequent observation: 0.23113 ± 0.00021 leptons 0.23222 ± 0.00027 hadrons 3.2σ difference

But is really: A_I(SLD) vs. A_{fb}b(LEP) 3.2σ difference

SM: Each observable calculated as a function of: $\Delta \alpha_{had}, \alpha_{s}(M_{Z}), M_{Z}, M_{top}, M_{Higgs} \text{ (and } G_{F})$ $\Delta \alpha_{had}$: hadronic vacuum polarisation [0.02758±0.00035] $\alpha_{s}(M_{Z})$: given by Γ_{had} and related observables M_{Z} : constrained by LEP-1 lineshape

Precision requires 1st and 2nd order electroweak and mixed radiative correction calculations (QED to 3rd) M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{Higgs} , M_{Higgs} M_{top} , M_{to

Calculations by programs TOPAZ0 and ZFITTER

Heavy Particle Masses W and Top

Standard Model Analysis

Fit results:	Correlations:			
$\Delta \alpha_{had} = 0.02767 \pm 0.00034$				
$\alpha_{\rm S}({\rm M_Z}) = 0.1186 \pm 0.0027$	0.01			
$M_Z = 91.1874 \pm 0.0021 \text{ GeV}$	-0.01 -0.02			
$M_{top} = 173.3 \pm 2.7 \text{ GeV}$	-0.02 0.05 -0.03			
$\log_{10}M_{\rm H} = 1.96 \pm 0.18$	-0.51 0.11 0.07 0.52			
^M Higgs = 91 ⁺⁴⁵ -32 GeV	Strong correlations with:			
	fitted $\Delta \alpha_{had}$ - reduced to			
$\Delta \alpha_{had}$ marginally improved	-0.20 with pQCD $\Delta \alpha_{\rm back}$			
α _s (M _Z) one of the best				
M ₇ ~ unchanged	Inted M _{top} -			
M. orror improved by fow %	20 % shift in M _{Higgs} for			
top end improved by lew /6	3 GeV shift in meas. M _{top}			
M _{top} measurement crucial!				

Hadronic Vacuum Polarisation

Subject of ongoing experimental and theoretical work: New measurements by CMD-2, KLOE, BABAR/BELLE, CLEO-c Discrepancy between results derived from τ and e⁺e⁻ data

Heavy Particle Masses: Top Quark

Predicted M_{top} in very good agreement with measurement Measured M_{top} more than 3 times as precise as prediction

Heavy Particle Masses: W Boson

Predicted and measured M_W within ~1 σ Measured M_W not yet as precise as prediction incl. M_{top}

Standard Model Analysis

M_{Higgs} = 91⁺⁴⁵₋₃₂ GeV Incl. theory uncertainty: M_{Higgs} < 186 GeV (95%CL)

does not include:

Direct search limit (LEP-2): M_{Higgs} > 114 GeV (95%CL)

Renormalise probability for M_H>114 GeV to 100%: M_{Higgs} < 219 GeV (95%CL)

Standard Model Analysis

					-
	Measurement	Fit	IO ^{mea}	^{ls} –O ^{fit} I/σ ^{me}	eas
			0 -	1 2	³ Fit to 17 high-Q ² observables
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02767	-		
m _z [GeV]	91.1875 ± 0.0021	91.1874			plus ^{Δα} had·
Γ_{z} [GeV]	2.4952 ± 0.0023	2.4959			$\sqrt{2}/ndof = 18.6/12.(12.60/)$
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	41.478			$\chi^{-/1001} = 10.0/13(13.076)$
R	20.767 ± 0.025	20.742			
A ^{0,I}	0.01714 ± 0.00095	0.01643			Largest $\sqrt{2}$ contribution:
$A_{I}(P_{\tau})$	0.1465 ± 0.0032	0.1480	-		
R _b	0.21629 ± 0.00066	0.21579			AI(SLD) VS. A _{fb} D(LEP)
R _c	0.1721 ± 0.0030	0.1723			Decided in favour of
A ^{0,b}	0.0992 ± 0.0016	0.1038			
A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742			leptons by MW
Ab	$\textbf{0.923} \pm \textbf{0.020}$	0.935			Afb(b) has largest pull: 2.8!
Ă,	0.670 ± 0.027	0.668			
A _I (SLD)	0.1513 ± 0.0021	0.1480			
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314			
m _w [GeV]	80.410 ± 0.032	80.377			Predict observables measured
Г _w [GeV]	$\textbf{2.123} \pm \textbf{0.067}$	2.092	-		\sim
m, [GeV]	172.7 ± 2.9	173.3			In reactions with low-Q-:
			 	, ,	$\square \qquad \qquad$
			0	1 2	3 20

20

Predictions for Low-Q² Measurements

Electron-nucleus atomic parity violation (APV) in atomic transitions: Parity-violating t-channel contribution due to γ/Z interference Weak charge Q_W of the nucleus (Z protons, N neutrons)

$$Q_W(Z,N) = -2 [(2Z+N)C_{1u} + (Z+2N)C_{1d}]$$

with $C_{1q} = 2g_{Ae}g_{Vq}$ at $Q^2 \rightarrow 0$ (q=u,d)

 $Q_W(Cs) = -72.74 \pm 0.46$ SM fit: -72.91 ± 0.03

Møller scattering (e⁻e⁻) with polarised e⁻ beam (E-158 experiment): Parity-violating t-channel contribution due to γ/Z interference $A_{PV} = (\sigma_R - \sigma_L)/(\sigma_R + \sigma_L) \propto Q_W(e^-) = -4g_{Ae}g_{Ve}$ at $Q^2 \sim 0.03 \text{ GeV}^2$

 $\sin^2\Theta_{\text{eff}}(Q=M_Z) = 0.2333 \pm 0.0015$ SM fit: 0.2314 ± 0.0001

NuTeV Neutrino-Nucleon Scattering

Paschos-Wolfenstein relation (iso-scalar target):

$$R_{-} = \frac{\sigma_{NC}(\nu) - \sigma_{NC}(\bar{\nu})}{\sigma_{CC}(\nu) - \sigma_{CC}(\bar{\nu})} = 4g_{L\nu}^{2}\sum_{q_{\nu}}\left[g_{Lq}^{2} - g_{Rq}^{2}\right] = \rho_{\nu}\rho_{ud}\left[\frac{1}{2} - \sin^{2}\theta_{W}^{(on-shell)}\right] + \text{electroweak radiative corrections}$$

Effective couplings: g_L , g_R at $\langle Q^2 \rangle \sim 20 \text{ GeV}^2$

Historically result quoted in terms of: $sin^2\Theta_W = 1-(M_W/M_Z)^2$ Factor two more precise than previous vN world average

New physics: Z', contact interactions, lepto-quarks, new fermions, neutrino oscillations, . . .

But likely rather old physics: Theory uncertainty (QED, LO PDFs), isospin violating PDFs, sea asymmetry Possible NOMAD measurement? Wealth of high-precision electroweak measurements: New results from Tevatron's Run-II, surpassing Run-I All Z-pole results (LEP-1, SLD) now final!

Most measurements agree with expectations: Successful test of loop corrections, constraints on new physics SM Higgs boson should be light Some 3-sigma effects: Spread in $sin^2\Theta_{eff}$ at the Z pole, NuTeV

Future at TEVATRON, LHC and ILC:

Precise theoretical calculations - including theory uncertainties Improved measurements in W boson and top quark physics Check Higgs-mass prediction! Find new physics? e⁺e⁻ Interactions

W-Pairs at LEP

W/Z Physics at the Tevatron

W Boson - Mass and Width

Tevatron (CDF, DØ): $p \overline{p} \rightarrow WX$, $W \rightarrow ev$, μv

Transverse mass

 $m_T^2 = 2E_T^e E_T^v \cos \phi(e, v)$

Final Run-I combination Awaiting Run-II results!

- Uncertainties dominated by: Statistics
 - Lepton energy scale will reduce with more data Then: Signal model PDFs, gluon radiation QED corrections in $W \rightarrow Iv$

Run-II expectation: $\delta M_W < 25 \text{ MeV}$

Top-Higgs Bands

Higgs Sensitivities and Constraints

NuTeV's Result

Various explanations:

New physics:

Z', contact interactions, lepto-quarks, new fermions,

neutrino oscillations, ...

But likely rather old physics:

Theory uncertainty (QED, LO PDFs)

Isospin violating PDFs, sea asymmetry

Standard Model Higgs Search

Combining production and decay channels and experiments:

Expectations: With 2/fb exclusion up to 123 GeV With 10/fb discovery up to 121 GeV

Currently: ~1/fb on tape