Combined Electroweak Analysis

Martin W. Grünewald University College Dublin Ireland

EPS HEP, Manchester, 21 July 2007

Summary of precision electroweak measurements

Tests of the electroweak Standard Model

The Higgs Boson of the Standard Model

Outlook and Conclusions

Thanks to the members of the LEP electroweak working group, the Tevatron electroweak working group, and the D \emptyset , CDF, SLD, OPAL, L3, DELPHI, ALEPH, E-158, NuTeV, ... experiments!

http://tevewwg.fnal.gov

http://www.cern.ch/lepewwg

e⁺e⁻ Interactions

Comparison of all Z-Pole Asymmetries

Effective electroweak mixing angle: $sin^2\Theta_{eff} = (1-g_{VI}/g_{AI})/4$ $= 0.23153 \pm 0.00016$ $\chi^2/ndof = 11.8/5 [3.7\%]$

Subsequent observation: 0.23113 ± 0.00021 leptons 0.23222 ± 0.00027 hadrons 3.2σ difference

But is really: A_I(SLD) vs. A_{fb}b(LEP) 3.2 σ difference

W Boson Mass at LEP-2

Potentially large FSI systematics (CR,BE) in the qqqq channel: M_W average dominated by qqlv channel (qqlv: 78%, qqqq: 22%)

FSI test: mass difference (calculated without FSI uncertainties): $M_W(qqqq) - M_W(qqlv) = -12 \pm 45 \text{ MeV}$

Need final CR limit from dedicated studies to limit CR error on MW

Uncertainty of ~25 MeV expected for 2/fb of data

Good agreement between all six experiments:

Small Higgs-boson mass

Top-Quark Mass

Separate final states:

 $163.5 \pm 4.5 \text{ GeV}$ di-leptons $171.2 \pm 1.9 \text{ GeV}$ lepton+jets $172.2 \pm 4.1 \text{ GeV}$ all-jets

- Reduction of JES systematics: In-situ calibration using W-mass constraint
- Systematic theory errors: Mass definition (in MC) Signal model Colour reconnection effects

Run-II prel.: $M_{top} = 170.9 \pm 1.1$ (stat.) ± 1.5 (syst.) GeV (1.1%!)

Precision requires 1st and 2nd order electroweak and mixed radiative correction calculations (QED to 3rd) M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{Higgs} enter through electroweak corrections (~ 1%)! M_{top} , M_{top}

Calculations by programs TOPAZ0 and ZFITTER

The Top Quark

Heavy Particle Masses W and Top

Standard	Model	Ana	lysis
----------	-------	-----	-------

	Measurement	Fit	O ^{meas}	^s –O ^{fit} /σ	meas	0
(5)			0 1	2	3	Fit to 17 high-Q ² observables
$\Delta \alpha_{had}^{(3)}(m_Z)$	0.02758 ± 0.00035	0.02768				
m _z [GeV]	91.1875 ± 0.0021	91.1875				pius dunad.
Г _Z [GeV]	2.4952 ± 0.0023	2.4957				$\sqrt{2}$ /ndof = 18 2/13 (15 1%)
σ_{had}^{0} [nb]	41.540 ± 0.037	41.477				χ /1001 = 10.2/13 (13.178)
R _I	20.767 ± 0.025	20.744				
A ^{0,I} fb	0.01714 ± 0.00095	0.01645				Largest χ^2 contribution:
$A_{I}(P_{\tau})$	0.1465 ± 0.0032	0.1481				A (CLD) = A (LD)
R _b	0.21629 ± 0.00066	0.21586				AI(SLD) VS. AfbD(LEP)
R _c	0.1721 ± 0.0030	0.1722				Decided in favour of
A ^{0,b}	0.0992 ± 0.0016	0.1038				lentone by Mur
A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742				
A _b	0.923 ± 0.020	0.935				Afb(b) has largest pull: $2.9\sigma!$
A _c	0.670 ± 0.027	0.668				
A _l (SLD)	0.1513 ± 0.0021	0.1481				
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314				
m _w [GeV]	80.398 ± 0.025	80.374				
Г _w [GeV]	$\textbf{2.140} \pm \textbf{0.060}$	2.091				
m _t [GeV]	170.9 ± 1.8	171.3				

1 2 3

Standard Model Analysis

 $\widetilde{\mathbf{X}}$

 $M_{H} = 76^{+33}_{-24} \text{ GeV}$ Incl. theory uncertainty: $M_{H} < 144 \text{ GeV} (95\% \text{CL})$

Direct search limit (LEP-2): M_H > 114 GeV (95%CL)

Probability M_H>114 GeV: 15%

Renormalise probability for M_H >114 GeV to 100%: M_H < 182 GeV (95%CL)

Higgs Constraints

Standard Model Analysis

Fit result	s:				Corre	lation	S:
$\Delta lpha$ had	= C).02768	± 0.0003	34			
$\alpha_{s}(M_{Z})$	= C).1185	± 0.0026		0.03		
M _Z	= 91	.1875	± 0.0021	GeV	0.00	-0.02	
M _{top}	= 171	.3	± 1.7	GeV	-0.01	0.03	-(
log ₁₀ M _H	= 1	.88	± 0.16		-0.54	0.06	(
M _{Higgs}	= 76+	-33 ₋₂₄ (GeV		Stron	g corr	ela
			fitted $\Delta \alpha_{had}$				
Δαhad marginally improved			-0.2	2 with	۱p		
$\alpha_{S}(M_{Z})$ one of the best			fitted M _{top} - 15 % shift i				
M _Z ~ unchanged M _{top} marginally improved							
			2 GeV shift				

02 03 -0.02)6 0.09 0.39 orrelations with: had - reduced to with pQCD $\Delta \alpha_{had}$ op ⁻ hift in MHiggs for shift in meas. M_{top}

 M_{top} and $\Delta \alpha_{had}$ results crucial!

Fit to all measurements but excluding: $\Delta\alpha_{had}(M_Z)$

Future constraints with increased precision: Tevatron/LHC ILC/GigaZ

Future Prospects

Direct M_{Higgs} measurement at discovery: ~ 1% accuracy

Many high-precision electroweak measurements at colliders: Z-pole results (LEP-1, SLD) final, LEP-2 close to final! New exciting results from Tevatron's Run-II (W, top)

Most measurements agree well with SM expectations: Successful test of loop corrections SM Higgs boson should be light Theories beyond the SM tightly constrained

Future at Tevatron, LHC and ILC: Improved measurements in W boson and top quark physics Search and discovery of the Higgs boson Tests of the theory - mass of the Higgs boson

Heavy Flavour Results at the Z-Pole

Electroweak HF results:

$R_b = \Gamma_b / \Gamma_{had}$	0.21629	± 0.00066
$R_{c} = \Gamma_{c} / \Gamma_{had}$	0.1721	± 0.0030
$A_{fb}(b) = \frac{3}{4} A_e A_b$	0.0992	± 0.0016
$A_{fb}(c) = \frac{3}{4} A_e A_c$	0.0707	± 0.0035
Ab	0.923	± 0.020
A _C	0.670	± 0.027

+ small correlations

Heavy-flavour combination: $\chi^2/ndof = 53/(105-14)$ low!

Central values very consistent Several systematic tests dominated by MC statistics

Asymmetries statistics dominated

Heavy Flavour Results at the Z-Pole

Top-Higgs Bands

Higgs Sensitivities

Calculation of ew observables: In terms of 5 SM parameters $\Delta \alpha_{had}, \alpha_{s}(M_{Z}),$ $M_{Z}, M_{top}, M_{Higgs}$

Partial derivative w.r.t. M_{Higgs}: Scaled by measurement error

Relative importance of result in constraining M_{higgs} : Z-pole asymmetries (sin² Θ_{eff}) and M_W

Predictions for Low-Q² Measurements

Electron-nucleus atomic parity violation (APV) in atomic transitions: Parity-violating t-channel contribution due to γ/Z interference Weak charge Q_W of the nucleus (Z protons, N neutrons)

$$Q_W(Z,N) = -2 [(2Z+N)C_{1u} + (Z+2N)C_{1d}]$$

with $C_{1q} = 2g_{Ae}g_{Vq}$ at $Q^2 \rightarrow 0$ (q=u,d)

$$Q_W(Cs) = -72.74 \pm 0.46$$
 SM fit: -72.90 ± 0.03

Møller scattering (e⁻e⁻) with polarised e⁻ beam (E-158 experiment): Parity-violating t-channel contribution due to γ/Z interference $A_{PV} = (\sigma_R - \sigma_L)/(\sigma_R + \sigma_L) \propto Q_W(e^-) = -4g_{Ae}g_{Ve}$ at $Q^2 \sim 0.03 \text{ GeV}^2$

 $\sin^2\Theta_{eff}(Q=M_Z) = 0.2333 \pm 0.0015$ SM fit: 0.2314 ± 0.0001

NuTeV Neutrino-Nucleon Scattering

Paschos-Wolfenstein relation (iso-scalar target):

$$R_{-} = \frac{\sigma_{NC}(\nu) - \sigma_{NC}(\bar{\nu})}{\sigma_{CC}(\nu) - \sigma_{CC}(\bar{\nu})} = 4g_{L\nu}^{2} \sum_{q_{\nu}} \left[g_{Lq}^{2} - g_{Rq}^{2}\right] = \rho_{\nu}\rho_{ud} \left[\frac{1}{2} - \sin^{2}\theta_{W}^{(on-shell)}\right] + electroweak + electroweak + electroweak}$$

Effective couplings: g_L , g_R at $\langle Q^2 \rangle \sim 20 \text{ GeV}^2$

Historically result quoted in terms of: $\sin^2 \Theta_W = 1 - (M_W/M_Z)^2$ Factor two more precise than previous vN world average

New physics: Z', contact interactions, lepto-quarks, new fermions, neutrino oscillations, . . .

But likely rather old physics: Theory uncertainty (QED, LO PDFs), isospin violating PDFs, sea asymmetry Possible NOMAD measurement?

W-Pairs at LEP

End