Electroweak Physics

Martin W. Grünewald

University College Dublin, Ireland

31st ICHEP, Amsterdam, July 30th, 2002

New precision measurements Muon anomalous magnetic moment Neutrino-nucleon scattering Z and W bosons: masses and couplings

Tests of the electroweak Standard Model

Direct search for the Standard-Model Higgs boson

Conclusion

Thanks to the members of the Tevatron, LEP-WW, LEP-2F, LEP-Higgs and LEP electroweak working groups, the Tevatron, LEP, LHC, NuTeV experiments, and: P.Antilogus, E.Barberio, D.Bardin, D.Bourilkov, R.Chierici, D. Duchesneau, G.Duckeck, M.Elsing, S. Eno, P.Gambino, P.Igo-Kemenes, R.Hawkings, J.Holt, T.Kawamoto, A.Kotwal, E.Lancon, L.Malgeri, K.McFarland, K.Moenig, C.Parkes, U.Parzefall, G.Passarino, B.Pietrzyk, P.Renton, S.Riemann, K.Sachs, A.Straessner, S.Todorova, N.Watson, G.Weiglein, S.Wynhoff, G.Zeller.

Muon Anomalous Magnetic Moment

Experimental result (1999 data): $10^{10}a = 11\ 659\ 202\ (15)$ Theoretical expectation (2001): $10^{10}a = 11\ 659\ 160\ (7)$ Difference of 2.6 σ ! 3

Muon Anomalous Magnetic Moment

Fresh BNL result (+2000 data): 10¹⁰a = 11 659 ____ (____

Paschos-Wolfenstein relation (iso-scalar target):

$$R_{-} = \frac{\sigma_{NC}(\nu) - \sigma_{NC}(\overline{\nu})}{\sigma_{CC}(\nu) - \sigma_{CC}(\overline{\nu})} = 4g_{L\nu}^{2} \sum_{q_{\nu}} \left[g_{Lq}^{2} - g_{Rq}^{2}\right] = \rho_{\nu} \rho_{ud} \left[\frac{1}{2} - \sin^{2}\theta_{W}^{(on-shell)}\right]$$

+ electroweak radiative corrections

Insensitive to sea quarks Charm effects only through d_V quarks (CKM suppressed) Need neutrino and anti-neutrino beam!

CC versus NC Events in the NuTeV Detector

Distribution of Event Lengths

From measured distributions to R_:

MC modelling of (anti-)neutrino beam, radiative corrections, detector response

NuTeV's Result

$$\sin^{2}\theta_{W}^{(on-shell)} = 1 - \frac{M_{W}^{2}}{M_{Z}^{2}} = 0.2277 \pm 0.0013 (stat.) \pm 0.0009 (syst.)$$

- 0.00022
$$\frac{M_{top}^{2} - (175 \, GeV)^{2}}{(50 \, GeV)^{2}} + 0.00032 \ln \frac{M_{Higgs}}{150 \, GeV} \qquad \left[\rho = \rho_{SM}\right]$$

Factor two more precise than previous vN world average

Global SM analysis predicts: 0.2227(4) Difference of $3.0 \sigma!$

NuTeV's Result

Main systematic uncertainties: (0.0013 stat. error) 0.0006 exp. syst.: 0.0004 (anti)-electron-neutrino flux 0.0006 Model : 0.0004 charm production, s(x) Statistics dominated result

Could also be the left-handed v/q couplings or tree ρ_0

The Z Lineshape

Test of γ /Z Interference

and VENUS data on hadrons

12

Leptonic Polarisation Asymmetries at the Z Pole

Effective Leptonic Coupling Constants

Heavy Flavour Results at the Z Pole

15

Heavy Flavour Results at the Z Pole

Comparison of all Z-Pole Asymmetries

W-Pair Production

Correlated average of: ^omeas^{/o}theory[:] 0.997(11) YFSWW 0.999(11) RacoonWW

Test at the 1% level!

Uses O(α) corrections: -2.5(0.5)% on σ_{theory}

Effect on differential cross sections and on γWW / ZWW gauge couplings?

Triple gauge couplings: g₁Ζ, κ_γ, λ_γ W weak charge: g₁Z W magnetic dipole: $\mu_W = \frac{e}{2M_W} \left(1 + \kappa_{\gamma} + \lambda_{\gamma} \right)$ W electric quadrupole: $Q_W = -\frac{e}{M_W^2} \left(\kappa_{\gamma} - \lambda_{\gamma} \right)$ W polarisation: Analyse decay angles

TGC analyses now based on $O(\alpha)$ calculations for W⁺W⁻

Charged Triple Gauge Couplings

O(α) slope change currently used as theory uncertainty:
 ~2/3 of total error on TGCs
 Ongoing studies to evaluate slope uncertainty on TGCs

Many More Processes Studied . . .

Small Standard-Model processes now tested at 5%-10%

W Boson – Mass and Width

Events/ 5 GeV 10³ 10² Tevatron (CDF, $D\emptyset$): $M_W \mathbf{v} \Gamma_W = 1.6 \ GeV$ $p \overline{p} \rightarrow W, W \rightarrow ev, \mu v$ $\bullet \Gamma_W = 2.1 \ GeV$ Transverse mass M_T $\Gamma_W = 2.6 \ GeV$ **Statistics** • D0 data Shaded - background Final Run-1 results on M_{W} and Γ_{W} : W Improved treatment 10 of correlations: PDFs, QED corrections in 1 $W \rightarrow Iv$ decays, M_{M} - Γ_{M} influence 60 80 100 120 140 160 180 200 40 -33 MeV correlated m_T (GeV

W Boson – Mass and Width

Final State Interconnection (FSI)

CR: Colour reconnection (colour flow rearrangement) BEC: Bose-Einstein correlations (identical mesons π , K, ...)

Use data to limit possible FSI bias on $M_W(qqqq)!$

Colour Reconnection (CR)

Hints (~2 σ) for colour reconnection observed: $\Delta M_W(qqqq) < 90 \text{ MeV} (at 68\% \text{ CL}, E_{CM} \text{ averaged})$ All other models (Ariadne, Herwig): smaller shifts Study jet reconstructions less sensitive to CR effects: Jet cores or high-energy particles only Well known for mesons in hadronic Z decays: Increased density of pairs at low 4-mom. difference Q

Single heavy bosons: W=Z (for light quarks)

W-pairs: W W → qq qq
E.g., divide out BEC effects
from single Ws:
=> D(Q): Sensitive only to
inter-W BEC

Only those potentially affect the W-mass reconstruction

Bose-Einstein Correlations (BEC)

 $(3\pm18)\%$ of model prediction seen $\Delta M_W(qqqq) < 10 \text{ MeV} (at 68\% \text{ CL}) \text{ for this model}$ Other BEC models need to be studied: Current error on $M_W(qqqq)$ due to BEC is 35 MeV Mass difference (calculated without FSI errors): $M_W(qqqq) - M_W(qqlv) = 9 \pm 44 \text{ MeV}$

Very good agreement between the experiments

SM comparison: Small Higgs-boson mass₂₉

SM: Each observable calculated as a function of: $\Delta \alpha_{had}, \alpha_{s}(M_{Z}), M_{Z}, M_{top}, M_{Higgs}$ $\Delta \alpha_{had}$: hadronic vacuum polarisation [0.02761(36)] $\alpha_{s}(M_{Z})$: given by Γ_{had} and related observables M₇: fixed by LEP-1 lineshape Precision requires 1st and 2nd order electroweak and mixed radiative correction calculations (QED to 3rd) Mtop, MHiggs enter through electroweak corrections!

Calculations by programs TOPAZ0 and ZFITTER

Prediction of Heavy Particle Masses W and top

Global Standard-Model Analysis

Fit to all data: χ^2 /ndof = 29.7/15 (1.3%)

Largest χ^2 contribution: $sin^2\Theta_W(NuTeV,\rho=\rho_{SM})$ Spread of $sin^2\Theta_{eff}$

Fit without NuTeV: χ^2 /ndof = 20.5/14 (11.4%)

Fit result is robust: Fitted parameters almost unchanged!

	Measurement	Pull	$(O^{meas} - O^{fit}) / \sigma^{meas}$
(5)			-3-2-10123
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	-0.24	•
m _z [GeV]	91.1875 ± 0.0021	0.00	
Г _Z [GeV]	2.4952 ± 0.0023	-0.41	-
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	1.63	
R _I	20.767 ± 0.025	1.04	_
A ^{0,I} fb	0.01714 ± 0.00095	0.68	-
A _I (P _τ)	0.1465 ± 0.0032	-0.55	-
R _b	0.21644 ± 0.00065	1.01	_
R _c	0.1718 ± 0.0031	-0.15	
A ^{0,b}	0.0995 ± 0.0017	-2.62	
A ^{0,c}	0.0713 ± 0.0036	-0.84	-
A _b	0.922 ± 0.020	-0.64	-
A _c	0.670 ± 0.026	0.06	
A _I (SLD)	0.1513 ± 0.0021	1.46	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.87	
m _w [GeV]	80.449 ± 0.034	1.62	
Г _w [GeV]	2.136 ± 0.069	0.62	-
m _t [GeV]	174.3 ± 5.1	0.00	
$\sin^2 \theta_{W}(vN)$	0.2277 ± 0.0016	3.00	
Q _w (Cs)	-72.18 ± 0.46	1.52	

-3-2-10123

Constraints on the SM Higgs-Boson Mass

M_{Higgs} = 81⁺⁵²₋₃₃ GeV Incl. theory uncertainty: M_{Higgs} < 193 GeV (95%CL)

Strongly correlated:N+0.7 with fitted Mtop35% shift in MHiggs for5 GeV shift in meas. Mtop

M_{top} measurement crucial!

Direct Higgs search limit: No contradiction!

Direct Search for the SM Higgs Boson

LEP-2: mainly $e^+e^- \rightarrow Z H \rightarrow f f b b$

Selection (mass independent) and mass reconstruction

Full statistical analysis for search based on: Global discriminating variable and reconstructed mass

 $\begin{array}{ll} \mbox{1.7 σ excess (P=8\%) over expected SM background} \\ \mbox{One experiment (ALEPH, 2.8-3.0 σ), one channel (qqbb)} \\ \mbox{Final LEP-2 SM Higgs-boson mass limit (95\% C.L.):} \\ \mbox{M}_{\mbox{Higgs}} > 114.4 \ \mbox{GeV} & (expected limit: 115.3 \ \mbox{GeV}) \end{array}$

Since 2001: TEVATRON

Future Higgs Search

TEVATRON: Search in the most probable mass range

Run-2a with 2fb⁻¹: 95% C.L. exclusion limit up to 115 GeV

Run-2b with 15fb⁻¹: 3σ evidence up to 135 GeV

LHC (ATLAS, CMS): Search in the full mass range

NuTeV, SLD, Tevatron, LEP, g-2, BES, . . . Wealth of high-precision measurements Many with high sensitivity to radiative corrections

Most measurements agree with expectations: Successful test of SM electroweak loops But have two 3-sigma effects:

Spread in $sin^2\Theta_{eff}$ and NuTeV's R_ result

Future:

Precise theoretical calculations - incl. uncertainties Improved measurements, esp. top, W, $\Delta \alpha_{had}$, $\sin^2 \Theta_{eff}$ Tevatron, LHC, LC, . . .

Find a Higgs boson . . . and study its properties!