Electroweak Precision Data Global Higgs Analysis

Martin W. Grünewald

Department of Experimental Physics UCD, Dublin, Ireland

DESY Zeuthen, February 28th, 2003

Overview on precision measurements

Tests of the electroweak Standard Model

Caveat: Low Higgs Masses

Conclusions

Thanks to the members of the LEPEWWG and the CDF, DØ, SLD, OPAL, L3, DELPHI, ALEPH and NuTeV experiments!

Visit http://www.cern.ch/LEPEWWG

More than 1000 measurements with (correlated) uncertainties:

Reduced to 20 precision pseudo-observables:

- Z-pole (SLD, LEP-1):
 - 5 Z lineshape and leptonic forward-backward asymmetries
 - 2 Polarised lepton asymmtries P_{τ} , $A_{LR(FB)}$
 - 6 Heavy flavour results (b,c)
 - 1 Hadronic charge asymmetry

Other:

2 W mass and width (Tevatron, LEP-2)

(New LEP-2 M_W)

- 1 Top-quark mass (Tevatron)
- 1 Neutrino-nucleon scattering (NuTeV)
- 1 Atomic parity violation (Caesium)
- 1 Hadronic vacuum polarisation (Z-pole / g-2?)

(New corrections)

3

plus "constants" such as the Fermi constant GF

Electron-nucleus interaction:

Parity-violating t-channel contribution due to γ/Z interference Weak charge Q_W of the nucleus (Z protons, N neutrons)

$$Q_W(Z,N) = -2 [(2Z+N)C_{1u} + (Z+2N)C_{1d}]$$

with $C_{1q} = 2g_{Ae}g_{Vq}$ at $Q^2 \rightarrow 0$ (q=u,d)

Most precise measurement for Caesium (Z=55, N=78)

Progress in theoretical corrections applied to measurements: QED self-energy and vertex radiative corrections $Z\alpha^2$ and $Z^2\alpha^3$ hep-ph/0204134, 0206124, 0208196, 0208227 Q_{\\/}(Cs) = -72.18 ± 0.29 (exp.) ± 0.36 (theo.)

 \rightarrow -72.83 ± 0.29 (exp.) ± 0.39 (theo.)

Now perfect agreement with SM expectation!

NuTeV Neutrino-Nucleon Scattering

Paschos-Wolfenstein relation (iso-scalar target):

$$R_{-} = \frac{\sigma_{NC}(\nu) - \sigma_{NC}(\overline{\nu})}{\sigma_{CC}(\nu) - \sigma_{CC}(\overline{\nu})} = 4g_{L\nu}^{2} \sum_{q_{\nu}} \left[g_{Lq}^{2} - g_{Rq}^{2}\right] = \rho_{\nu}\rho_{ud} \left[\frac{1}{2} - \sin^{2}\theta_{W}^{(on-shell)}\right]$$

+ electroweak radiative corrections

Effective couplings: g_L , g_R at $\langle Q^2 \rangle \sim 20 \text{ GeV}^2$ Historically result quoted in terms of: $\sin^2\Theta_W = 1 - (M_W/M_Z)^2$ Factor two more precise than previous vN world average $_{5}$

NuTeV's Result

$$\sin^{2}\theta_{W}^{(on-shell)} = 1 - \frac{M_{W}^{2}}{M_{Z}^{2}} = 0.2277 \pm 0.0013 (stat.) \pm 0.0009 (syst.)$$
$$- 0.00022 \frac{M_{top}^{2} - (175 \, GeV)^{2}}{(50 \, GeV)^{2}} + 0.00032 \ln \frac{M_{Higgs}}{150 \, GeV} \qquad \left[\rho = \rho_{SM}\right]$$

Global SM analysis predicts: 0.2229(4) Difference of 2.9 σ !

Quote result in terms of effective couplings, not $sin^2\Theta_W$ nor $M_W!$ ⁶

Mass of the Top Quark

Tevatron (CDF, DØ): $p \overline{p} \rightarrow t \overline{t} X, t \overline{t} \rightarrow b \overline{b} W W$ No results from Run-II yet Final Run-I results in RPP

Systematic uncertainties dominated by:

Jet energy scale (2-5 GeV) will reduce with more data Signal model (2-3 GeV) Background model (~2 GeV) MEs, PDFs, MC generators

 Run-I result:
 $M_{top} = 174.3 \pm 3.2 \text{ (stat.)} \pm 4.0 \text{ (syst.)}$ GeV

 Run-II expectation: $\delta M_{top} < 2.5 \text{ GeV}$ 7

W Boson - Mass and Width

Run-II expectation: $\delta M_W < 25 \text{ MeV}$

W Boson - Mass and Width

LEP-2: $e^+e^- \rightarrow W^+W^ \rightarrow qqqq, qqlv, lvlv$ Invariant mass M_{inv}

Preliminary results

Currently large FSI systematics (BE,CR) in the qqqq channel: Average dominated by M_W(qqlv)

Mass difference (calculated without FSI errors): $M_W(qqqq) - M_W(qqlv) = 22 \pm 43 \text{ MeV}$

SM comparison: Small Higgs-boson masໍs

Z Lineshape and Leptonic F/B Asymmetries

Z Lineshape and Leptonic F/B Asymmetries

Lepton universality: $R_{I} = 20.767 (25)$ $A_{fb}(I) = 0.0171 (10)$ MSM prediction shown for: $\alpha_s = 0.118 \pm 0.002$ $\Delta \alpha_{had} = 0.02761 \pm 0.0036$ $M_{top} = 174.3 \pm 5.1 GeV M_{Higgs} = 114...1000 GeV$ Low Higgs mass preferred! 12

Heavy Flavour Results at the Z Pole

A^{0,bb}

FB

All measurements very consistent: χ^2 /ndof = 47.6/(105-14) low! F/B asymmetries statistics domina¹4ed

Heavy Flavour Results at the Z Pole

Comparison of all Z-Pole Asymmetries

Effective electroweak mixing angle: $sin^2\Theta_{eff} = 0.23148$ (17)

$$\chi^2$$
/ndof = 10.2/5 [7.0%]

A-posteriori observation:0.23113 (21)leptons0.23217 (29)hadrons

But is really: A_I(SLD) vs. A_{fb}b(LEP)

Both: 2.9 σ difference

SM: Each observable calculated as a function of: $\Delta \alpha_{had}, \alpha_{s}(M_{Z}), M_{Z}, M_{top}, M_{Higgs}$ (and G_F) $\Delta \alpha_{had}$: hadronic vacuum polarisation [0.02761(36)] $\alpha_{s}(M_{Z})$: given by Γ_{had} and related observables M_{Z} : constrained by LEP-1 lineshape

Precision requires 1st and 2nd order electroweak and mixed radiative correction calculations (QED to 3rd) M_{top}, M_{Higgs} enter through electroweak corrections!

Calculations by programs TOPAZ0 and ZFITTER

Heavy Particle Masses W and Top

Global Standard-Model Analysis

Fit to all data: χ^2 /ndof = 25.5/15 (4.4%)

Largest χ^2 contribution: $sin^2\Theta_W(NuTeV,\rho=\rho_{SM})$ Spread of $sin^2\Theta_{eff} \rightarrow Afb(b)$

Fit without NuTeV: χ^2 /ndof = 16.7/14 (27.3%)

Fit result is robust: Fitted parameters almost unchanged!

Constraints on the SM Higgs-Boson Mass

6 $M_{Higgs} = 91^{+58}_{-37} \text{ GeV}$ theory uncertainty $\Delta \alpha_{\rm had}^{(5)} =$ Incl. theory uncertainty: 0.02761±0.00036 0.02747±0.00012 M_{Higgs} < 211 GeV (95%CL) Without NuTeV 4 $_{\chi^2}$ Strongly correlated: -0.5 (-0.2) with fitted $\Delta \alpha_{had}$ 2 +0.7 with fitted M_{top} 35% shift in M_{Higgs} for Excluded Preliminary 5 GeV shift in meas. M_{top} 0₂₀ 100 400 M_{top} measurement crucial! m_н [GeV] Theory uncertainty: **Direct Higgs search limit:** Need two-loop No contradiction!

calculations for $\sin^2\Theta_{eff}$ ²⁰

Higgs Mass from each Observable

For each observable:

Fit for M_{Higgs} with the constraints:

 $\begin{array}{lll} \Delta \alpha_{had} &= 0.02761(36) \\ \alpha_{\rm S}({\rm M_Z}) &= 0.118(2) \\ {\rm M_Z} &= 91187.5(2.1) \ {\rm MeV} \\ {\rm M_{top}} &= 174.3(5.1) \ {\rm GeV} \end{array}$

Meaningful?

Caveats

What about heavy-flavour widths and f/b asymmetries? Maximal effect if all Z*H decays are tagged as b-production Γ_b increased by the same amount as Γ_{had} , Afb(b) changed $\Delta R_b = 1.1 R_H$ | $\Delta R_b < 0.1 \delta R_b$ => M_H > 47 GeV is required

W mass reconstruction probably not affected

Z*+H also dependent on centre-of-mass energy!

SM global fit ok for M_H central value and upper errors Quantitative statements in low Higgs-mass regime dubious

Correct treatment requires experimental efficiencies and corrections for Z^* +H as a function of M_H

Not available! But have limit from direct search M_H>114.4 GeV (95% CL)

23

Wealth of high-precision measurements: Many with high sensitivity to radiative corrections

Most measurements agree with expectations: Successful test of SM loop corrections But have two ~3-sigma effects:

Spread in $sin^2\Theta_{eff} \rightarrow A_{fb}(b)$, and NuTeV's R_ result

Validity of any pseudo-observable analysis: Real Higgs production or non-MSM final states must be negligible

Future:

Precise theoretical calculations - incl. theor. uncertainties Improved measurements of top, W, $\Delta \alpha_{had}$, $\sin^2 \Theta_{eff}$ Check Higgs-mass prediction