NA48 Future Plans

RHIC & AGS Annual Users Meeting - Brookhaven

Giuseppe Ruggiero

University of Firenze

On behalf of NA48 – Future Working Group

Outline

From the address of Aymar (CERN CEO) 13/1/2004:

"

"

. . .

- iv. Another goal [for 2004-2010] would be: to define possible new fixed-target experiments (praised in another Cogne* meeting in September 2004).
- v. To decide in 2006 (...) any proposed R&D or experiment depending on the funds available or expected at that time.

*Cogne=Villars

Proposal (NA48/3)

CERN-SPSC-2004-010 / **SPSC-EOI-002**

- NA48 detector upgrading to study $K^+ \otimes p^+ m\bar{n}$
 - ✤ High Physical potential
 - Aim to a 10 % measurement of V_{td}

Availability of experimental infrastructures (NA48/2):

- Location for the experiment (ECN3 high radiation area)
- Beam line (<u>high intensity</u>, slowly extracted protons from SPS)
- **Subdetectors (e.g. LKr calorimeter)**
- 2004 run (beam test)
- Goal:

 \checkmark About 50 Events with a S/B of 10:1 in 2 years of data taking

Experimental features

Beam Layout

Beam line:

- + Unseparated positive $\mathbf{p}^* / \mathbf{K}^* / \mathbf{p}$ beam
- → P = 75 GeV/c, **D**P/P ~ 1% ($P_p = 400 \text{ GeV/c}$)

Beam detectors:

- Differential Cerenkov detector (CEDAR)
 - Tag Kaons (made blind to p⁺ and p)
- ✤ Beam spectrometer (KABES):
 - Redundant measurement of beam momentum
 - Measurement of the kaon direction

Micromega-type chambers (already employed in NA48/2) Silicon – pixel detector

New high-intensity beam (1)

BEAM	NA48/2	NA48/3	Factor
SPS protons per pulse	1X10 ¹²	3X10 ¹²	3
Duty cicle (s/s)	4.8/16.8		1
Beam acceptance (mrad)	±0.36	± 2.4, ± 2.0	
Solid angle (msterad)	0.40	16	40
$\langle P_{K} \rangle$ GeV / c	60	75	1.35
\mathbf{DP}_{K} GeV/c	6	1.5	0.375
RMS (D P/P %)	4	0.95	0.25
Beam size (cm)	±1.5	±2.5	2.8
Area at KABES (cm ²)	7.0	20	
Divergence (mrad)	0.05	0.1	2

New high-intensity beam (2)

BEAM	NA48/2	NA48/3	Factor
Decay fiducial length (t_k)	50 m (0.11)	50 m (0.09)	(0.8)
Beam flux / pulse			
р (Х 10 ⁷)	0.86	49	
\mathbf{K}^+	0.31	15	50
₽⁺	3.32	150	45
e ⁺	0.95	35	
Total per pulse (X 10 ⁷)	5.5	250	45
per spill lentgh (MHz)	18	800	45
@ KABES / cm ² (MHz)	2.5	40	16
Eff. Run time / days	0.5 x 120	2/3 x 90	1
K ⁺ decays per year (inside fiducial length)	1 X 10 ¹¹	4 X 10 ¹²	40

Detector Layout

Subdetectors downstream the beginning of the fiducial region:

- ✤ Double spectrometer
 - 6 drift chambers (4 chambers already employed in NA48)
 - 2 magnet (1 magnet already employed in NA48)
 - Momentum redundant measurements
- Photon veto:
 - LKr calorimeter (already in NA48) + charged particle sweeping magnet
 - 2 small angle vetoes (CMS prototypes)
 - 8 rings as large angle vetoes (upgrade of AKL detectors in NA48)
- ✤ Muon veto

Giuseppe Ruggiero

Double spectrometer layout

Double spectrometer performance

Photon rejection

- Aim to reach 10⁻⁶ inefficiency
- For P_D < 40 GeV/c there are at least 35 GeV/c in the e.m. calorimeters

Plans to study <u>our inefficiency</u> (LKr calorimeter + small angle veto) by collecting a large sample of **p**⁺**p**⁰ events in 2004 run

Small angle photon veto

- **PbWO₄** crystals (CMS)
- ✓ Dimension of crystals
 - 2x2x23 cm³
- ✓ 7 x 7 cm matrix
- $\checkmark \sim 25 X_0$
- ✓ Readout with light guides and PMT
- ✓ Hard to radiation damage

Low intensity hermetic photon veto test foreseen in 2004 run

Muon rejection

- **Better than 10⁻⁵ rejection inefficiency mandatory**
 - ✓ 10⁻⁵ obtained by NOMAD
- Present detector <u>not enough efficient</u> (5x10⁻³ inefficient)

✓ 3 scintillator arrays separated by iron planes 80 cm thick.

 We are planning to build a new detector (Hadron calorimeter + muon detector)

Tests in 2004 run

Muon sweeping

- **CEDAR** (with COMPASS collaboration)
- **KABES** (micromega):
 - ✓ FADC readout
 - ✓ 25 **m** mesh
- Si pixel chip
- High Intensity DCH test
- Low intensity hermetic geveto test

Conclusions

- We are working on the upgrade of the NA48 detector to study the $K^+ \otimes p^+ \overline{m}$ decay.
- We have established a Working Group.
- Fundamental tests foreseen in 2004 run.
- We plan to contribute to the Villars SPSC meeting (22-28 september).