NA48 Results on Rare K_{S,L} Decays

Richard Batley University of Cambridge, UK

On behalf of the NA48 Collaboration

XIV Rencontres de Blois 16–22 June 2002

- $\mathbf{J} \quad \mathbf{K}_{\mathbf{S},\mathbf{L}} \rightarrow \pi^0 \gamma \gamma$
- \square K_S \rightarrow $\pi^0 e^+ e^-$

Physics Motivation

1) Tests of Chiral Perturbation Theory

- $O(p^2)$: no contribution
- $O(p^4)$: <u>finite</u>.. unambiguous predictions $(\pm 5\%)$

2) Input to CP Violation studies

The NA48 Experiment

The NA48 Detector

2000 Run :

NO SPECTROMETER

LKr EM calo.

 $\sigma_E / E \sim 0.8\%$ $\sigma_x \sim 1 \text{ mm}$ $\sigma_t \sim 230 \text{ ps}$

Neutral Reconstruction

Measurement of $K_S \rightarrow \gamma \gamma$

1) Use near target data from 2000(2) run :

2) So: use far target data from 2000(1) run :

Far target : $K_L \rightarrow \gamma \gamma, K_L \rightarrow 3\pi^0$

 $\begin{tabular}{l} \label{eq:hadronic background} \\ \end{tabular} in \ \end{tabular} K_L \rightarrow \gamma \gamma : \end{tabular} \end{tabular}$

Subtract using radius of centre of energy :

🔶 Energy spectra :

Systematic uncertainties small :

Backgrounds :	± 0.3 %
Acceptance :	± 0.6 %

(preliminary)

$$\frac{\Gamma(K_L \to \gamma \gamma)}{\Gamma(K_L \to 3\pi^0)} = (2.81 \pm 0.01 \pm 0.02) \times 10^{-3}$$

PDG : $(2.77 \pm 0.08) \times 10^{-3}$

$K_S \rightarrow \gamma \gamma$: backgrounds

Hadronic background :

Accidental background :

$$\Delta t = t_1 - t_2$$

Had. + Acc. background : (0.8 ± 0.3) %

$K_S \rightarrow \gamma \gamma$: bgd from $K_S \rightarrow 2\pi^0$

 $K_S \rightarrow \pi^0 \pi^0$ with two lost or overlapping photons decay vertex shifts downstream :

Normalise to <u>fully reconstructed</u> $K_S \rightarrow \pi^0 \pi^0$: Bgd from $K_S \rightarrow \pi^0 \pi^0$: (0.8 ± 0.2)%

Measurement of $K_S \rightarrow \gamma \gamma$

~ 20000 $K_{S,L} \rightarrow \gamma \gamma$ candidates in signal region (total non- $\gamma \gamma$ background ~ 2.0 %)

$BR(K_s \rightarrow \gamma \gamma) = (2.78 \pm 0.06 \pm 0.04) \times 10^{-6}$

Main systematics :

- $\begin{array}{ll} \mathsf{BR}(\mathsf{K}_{\mathsf{S}} \rightarrow \pi^{0} \, \pi^{0}) & \pm \, 0.9 \ \% \\ \mathsf{Had}, \ \mathsf{acc} \ \mathsf{bgd} & \pm \, 0.7 \ \% \\ \mathsf{MC} \ \mathsf{statistics} & \pm \, 0.6 \ \% \end{array}$
- (preliminary)

$K_S \to \gamma\gamma$ measurements

~ 30 % larger than $O(p^4) \chi PT$ prediction

indication of a large $O(p^6)$ contribution

$K_L \rightarrow \pi^0 \gamma \gamma$

CERN-EP / 2002-030 hep-ex / 0205010

Event selection :

- use ε'/ε data from 1998-99
- fig normalise to $K_L \rightarrow 2\pi^0$
- require 4 in-time photon showers
- veto AKL or spectrometer activity

Challenging backgrounds :

- $\mathbf{J} \quad \mathsf{K}_{\mathsf{L}}
 ightarrow \mathbf{3}\pi^{0}$ (missing or overlapping showers)
- $figure badly reconstructed K_L
 ightarrow 2\pi^0$
- accidental overlapping events

Background from $K_L \to 3\pi^0$

Reduce overlaps using shower width :

Estimate $K_L \rightarrow 3\pi^0$ decay vertex position :

($K_L \rightarrow \pi^0 \gamma \gamma$ signal \rightarrow unphysical z_{max} region)

Background from $K_L \rightarrow 3\pi^0$: (2.7 \pm 0.4) %

$\begin{array}{c} & \mathsf{K}_{\mathsf{L}} \to \pi^{0} \gamma \gamma \text{ sample} \\ & \bullet & \mathsf{Invariant\ mass\ distributions\ :} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$

 $X^2/n.d.f = 31.1/30$ 200 500 Control Control Region Region 100 250 135. 0. 100. 300. 400. 125. 130. 140. 145. 200. m_{12} [MeV/ c^2] $m_{34} \ [MeV/c^2]$ remove $K_{I} \rightarrow \pi^{0} \pi^{0}$ 2558 signal candidates

(total background : 82 \pm 12 events)

Ambiguous mass assignment : 345 events
 especially affects low mass tail

not used for determination of a_V

$K_L \rightarrow \pi^0 \gamma \gamma$ measurement

determine $O(p^6)$ VMD contribution :

 $a_{\rm v} = -0.46 \pm 0.03 \pm 0.04$

KTeV : $-0.72 \pm 0.05 \pm 0.06$

Using this value of a_V :

 $BR(K_L \to \pi^0 \gamma \gamma) = (1.36 \pm 0.03 \pm 0.04) \times 10^{-6}$

KTeV : $(1.68 \pm 0.07 \pm 0.08) \times 10^{-6}$

 $K_L \rightarrow \pi^0 \gamma \gamma$: low $m_{\gamma\gamma}$ region

160 - 240

Clear π^0 signal

clear evidence for $O(p^6)$ contribution

Consequences for $K_L \rightarrow \pi^0 e^+ e^-$

BR($K_S \rightarrow \gamma \gamma$) \longrightarrow reassessment?

Search for $K_S \rightarrow \pi^0 \gamma \gamma$

Ecker, Pich, de Rafael

No experimental search so far

NA48 analysis :

- use High Intensity K_S data from 1999 (40 hour run, ~ 3 x 10⁸ K_S decays)
- veto events with any non- γ activity
 - normalise to $K_S
 ightarrow \pi^0 \, \pi^0$

Search for $K_S \rightarrow \pi^0 \gamma \gamma$

Data :2 candidate eventsExpected bgd : 2.3 ± 0.2 events

mainly $K_S \rightarrow \pi^0 \pi^0$ with one lost plus one accidental photon : 2.1 ± 0.1 events

BR $(K_s \rightarrow \pi^0 \gamma \gamma) < 4.4 \times 10^{-7}$ at 90% C.L.

(preliminary)

Search for $K_S \rightarrow \pi^0 e^+ e^-$

PL B514 (2001) 253

Determines indirect CP-violating component of $K_L \rightarrow \pi^0 e^+ e^-$:

$$BR(K_L \to \pi^0 e^+ e^-)_{\text{ind}} = \left| \varepsilon \right|^2 \frac{\tau_L}{\tau_S} BR(K_S \to \pi^0 e^+ e^-)$$

Expect:
$$BR(K_s \rightarrow \pi^0 e^+ e^-) = 5.2 |a_s|^2 \times 10^{-9}$$

 $|a_s| \sim 1$

main background from Dalitz decays :

Search for $K_S \rightarrow \pi^0 e^+ e^-$

(residual bgd 0.15 evts)

BR $(K_s \to \pi^0 e^+ e^-) < 1.4 \times 10^{-7}$ at 90% C.L.

Geometrical acceptance = 31 % Overall acceptance = 7.5 %

Matrix element from χ PT d'Ambrosio et al., Ecker et al.

Summary

• ~ 30% above $O(p^4)$ prediction

byproduct :

$$\frac{\Gamma(K_L \to \gamma \gamma)}{\Gamma(K_L \to 3\pi^0)}$$

factor 4 better than PDG

$${\sf K}_{\sf L} o \pi^0 \gamma \gamma$$

negligible CP-conserving contribution to $K_L \to \pi^0 \, e^+ e^-$

To extract direct CP violating component :

must measure

main goal of NA48/1 2002 run

STARTS TODAY !!