An overall review of the Kaon Physics results from NA48

Roberta Arcidiacono CERN, Geneva

SuGRA20

March 18th, 2003

on behalf of the NA48 Collaboration

Cagliari, Cambridge, CERN, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Orsay, Perugia, Pisa, Saclay, Siegen, Torino, Warsaw, Wien

\rightarrow Introduction

- \implies Results on CP violation ($\Re(\varepsilon'/\varepsilon)$, $\delta_L(e)$, η_{000})
- \implies By-product analysis (K_S lifetime, K mass, η mass)
- $\implies \text{Results on Rare Decays } (\mathbf{K} \to \pi^+ \pi^- e^+ e^- , \, \mathbf{K} \to \pi^0 \gamma \gamma, \gamma \gamma)$
- \rightarrow News from NA48/1 2002
- → Summary

The NA48 beam lines

The NA48 Detector

Magnetic spectrometer

 $\sigma_{X,Y} \sim 100 \ \mu \text{m}$ $\sigma_{K\ mass} \sim 2.5 \ MeV/c^2$ resolution on (x, y) vertex ~ 2 mm \rightarrow allows for beams separation

Liquid Krypton em calorimeter

with high granularity (~ 13500 cells) $\sigma_t \sim 220 \ ps$ $\frac{\sigma(E)}{E} < 1 \ \% \text{ for } E_{\gamma} > 25 \ GeV$ $\sigma_{\pi^0 \ mass} \simeq 1.1 \ MeV/c^2$

Resolutions plots

LKr calorimeter

Spectrometer

NA48 data taking overview

no spectrometer

Tagging K_S events...

The K_S events are identified by tagging the parent proton (measurement of the proton time in the tagging station)

$\mathfrak{Re}(\varepsilon'/\varepsilon)$: the NA48 method

All experiments so far used the **Double Ratio method**:

$$\mathbf{R} = \frac{N(K_L \to \pi^0 \pi^0) [0.0009]}{N(K_S \to \pi^0 \pi^0) [0.314]} \frac{N(K_S \to \pi^+ \pi^-) [0.686]}{N(K_L \to \pi^+ \pi^-) [0.002]} \simeq 1 - 6 \times \Re\left(\frac{\varepsilon'}{\varepsilon}\right)$$

Accuracy $2 \times 10^{-4} \longrightarrow$ count a lot of events in the most unbiased way

To exploit cancellation of systematic effects

- = the 4 decay modes are taken simultaneously
- \Rightarrow cancellation of fluxes, dead-times, inefficiencies, accidental losses
- from the same fiducial region (lifetime $\leq 3.5 \tau_S$) and two quasi-collinear beams, with offline lifetime weighting applied to K_L events to equalize distribution of K_S and K_L decay positions
- with similar energy spectra performing the analysis in energy bins to minimize the remaining K_S / K_L differences
- \Rightarrow small acceptance correction
- **with high resolution detectors**
- \Rightarrow small background level

History of ε'/ε data collected by NA48

year	days	ppp on K_L target	$K_L \rightarrow \pi^0 \pi^0$
1997	89	1×10^{12}	0.49 million
			$\Re e(\varepsilon'/\varepsilon) = (18.5 \pm 4.5 \pm 5.8) \times 10^{-4}$
			Phys.Lett.B465 (1999) 335-348
1998	135	1.4×10^{12}	1.05 million
1999	128	1.4×10^{12}	2.24 million
			$\Re \mathfrak{e}(\varepsilon'/\varepsilon) = (15.0 \pm 1.7 \pm 2.1) \times 10^{-4}$ Eur.Phys.J.C22 (2001) 231-254
2001	90	$2.4 \times 10^{12} *$	1.55 million
			$\Re \mathfrak{e}(\varepsilon'/\varepsilon) = (13.7 \pm 2.5 \pm 1.8) \times 10^{-4}$
			Phys.Lett.B544 (2002) 97-112

 \ast modified beam parameters

The last ε'/ε data taking

- \Rightarrow in 2001 we collected additional data under <u>varied conditions</u> to test the intensity related systematics of the measurement
 - SPS spill length/cycle time duty cycle proton beam energy instantaneous intensity

detector

new drift chambers

Comparing 2001 and 98+99 Results

Corrections and uncertainties on **R** (Units = 10^{-4})

	2001				1998/1999					
statistical error		\pm	14.7				\pm	10.1		
$\pi^0 \pi^0$ reconstruction				\pm	5.3				\pm	5.8
Acceptance	21.9	\pm	3.5	\pm	4.0	26.7	\pm	4.1	\pm	4.0
$\pi^+\pi^-$ trigger inefficiency	5.2	\pm	3.6			-3.6	\pm	5.2		
Accidentals: intensity diff.				\pm	1.1				\pm	3.0
illumination diff.		\pm	3.0				\pm	3.0		
K_S in-time activity				\pm	1.0				\pm	1.0
Accidental tagging	6.9	\pm	2.8			8.3	\pm	3.4		
Tagging inefficiency				\pm	3.0				\pm	3.0
$\pi^+\pi^-$ background	14.2			\pm	3.0	16.9			\pm	3.0
$\pi^+\pi^-$ reconstruction				\pm	2.8				\pm	2.8
beam scattering	-8.8			\pm	2.0	-9.6			\pm	2.0
$\pi^0 \pi^0$ background	-5.6			\pm	2.0	-5.9			\pm	2.0
AKS inefficiency	1.2			\pm	0.3	1.1			\pm	0.4
Total correction and										
systematic error	+35.0	\pm	6.5	±	9.0	+35.9	\pm	8.1	\pm	9.6
double ratio R	0.99181				0.99098					

 $\mathfrak{Re}(\varepsilon'/\varepsilon)$: the final result

▶ 6.7 σ away from 0
▶ proposed accuracy has been reached ^(□)

World average of ε'/ε

Not only ε'/ε

R. Arcidiacono - Results from NA48

 K_{e3} charge asymmetry measurement

$$\delta_l(e) = \frac{BR(K_L \to \pi^- e^+ \nu_e) - BR(K_L \to \pi^+ e^- \overline{\nu_e})}{BR(K_L \to \pi^- e^+ \nu_e) + BR(K_L \to \pi^+ e^- \overline{\nu_e})} = 2\Re(\epsilon)$$

preliminary

 $\implies \delta_L(e) = (3.317 \pm 0.070_{stat} \pm 0.072_{syst}) \times 10^{-3}$

New World Average: $\delta_L = (3.310 \pm 0.054) \times 10^{-3}$ with a $\chi^2 = 4.2/7$

K_{e3} : measurements overview

η_{000} measurement

$$\eta_{000} = \frac{A(K_{\rm S} \to \pi^0 \pi^0 \pi^0)}{A(K_{\rm L} \to \pi^0 \pi^0 \pi^0)}$$

if CPT symmetry assumed $\Re e \eta_{000} = \Re e \epsilon$ $\Im m \eta_{000}$ sensitive to direct CP violation

$$\begin{split} f(E,t) &= I_{\pi^0\pi^0\pi^0}^{near} / I_{\pi^0\pi^0\pi^0}^{far} = \\ A(E) \left[1 + |\eta_{000}|^2 e^{t/\tau_L - t/\tau_S} + 2D(E) e^{t/2\tau_L - t/2\tau_S} (\Re \epsilon \eta_{000} \cos(\Delta m t) - \Im m \eta_{000} \sin(\Delta m t)) \right] \end{split}$$

 $5.9 \times 10^6 \pi^0 \pi^0 \pi^0$ (KSHI 2000)

acceptance corrected at 1^{st} order using data (from the K_L only run 2000)

fit in energy bin of f(E,t)range 70-170 GeV fit parameters: A(E), $\Re e \eta_{000}$, $\Im m \eta_{000}$

Systematic sources: $K^0 - \overline{K^0}$ dilution, acceptance, accidentals, energy scale, binning

η_{000} measurement

By-products of the ε'/ε analysis

K_S lifetime measurement

- 98 + 99 ε'/ε data
- K_S lifetime derived from the ratio K_S/K_L of decay time distributions

 \rightarrow detector acceptance cancels in first approximation

• $\tau_S << \tau_L$, the ratio is primarily sensitive to the τ_S

 N_S/N_L of $K^0 \to \pi^+\pi^-, \pi^0\pi^0$:

- corrected for *residual acceptance* differences due to beams geometry [MC]
- background subtracted (10^{-3} in K_L sample) using data
- fitted in bins of energy [70-170 GeV] and lifetime [0.5-3.5 τ_S]

 K_S lifetime measurement overview

Data samples: 13.2M K_S $\to \pi^+\pi^-$, 12.2M K_L $\to \pi^+\pi^-$, 3.1M K_S $\to \pi^0\pi^0$, 2.8M K_L $\to \pi^0\pi^0$

$$\pi^{+}\pi^{-} \qquad \tau_{S} = (0.89592 \pm 0.00052_{stat} \pm 0.00054_{syst}) \times 10^{-10} \text{ s}$$

$$\pi^{0}\pi^{0} \qquad \tau_{S} = (0.89626 \pm 0.00129_{stat} \pm 0.00100_{syst}) \times 10^{-10} \text{ s}$$

 \Rightarrow

Combined result:

 $\tau_S = (0.89598 \pm 0.00048_{stat} \pm 0.00027_{MCstat} \pm 0.00043_{syst}) \times 10^{-10} \text{ s}$

Phys.Lett.B537 (2002)

Measurement of η and K^0 masses

 η runs conceived for the ε' analysis

 \Rightarrow

 η mass: special η runs

 K^0 mass: data with only K_L beam

 η and π^0 produced \Rightarrow used to check the calorimeter energy scale [comparing reconstructed vertex in $\pi^0, \eta \rightarrow \gamma \gamma$ events with the targets position]

<u>Method</u>

Year 2000

Using the $3\pi^0 \rightarrow 6\gamma$ decay channel:

1) the z_{π^0} position is inferred using the π^0 mass constraint via the relation

$$d_{[z_{\pi^0}, LKr]} = \frac{1}{M_{\pi^0}} \sqrt{E_1 E_2} d_{12}$$

2) using the d average from the 3 π^0 , the 6-body invariant mass is

$$M = \frac{1}{d_{\pi^0}} \sqrt{\sum_{i,j,i < j} E_i E_j (d_{ij})^2}$$

! M is independent of the energy scale of the calorimeter !

SuGRA20

Measurement of η and K^0 masses

Only symmetric decays used (photons \sim the same energy) to minimize sensitivity to residual non-linearities

 M_{η}/M_{π^0} measured with an accuracy three times better than the PDG world average

 M_{K^0}/M_{π^0} measured with an accuracy similar to the PDG

PDG 2000 Values: $M_{\rm K^0} = 497.672 \pm 0.031 \ {\rm MeV/c}^2$ $M_\eta = 547.30 \pm 0.12 \ {\rm MeV/c}^2$

$$M_{\eta} = 547.843 \pm 0.030_{stat} \pm 0.005_{MCstat} \pm 0.041_{syst} \text{ MeV/c}^2$$
$$M_{\text{K}^0} = 497.625 \pm 0.001_{stat} \pm 0.003_{MCstat} \pm 0.031_{syst} \text{ MeV/c}^2$$

Phys.Lett.B533 (2002)

On Rare Decays

 K_L , $K_S \rightarrow \pi^+ \pi^- e^+ e^-$

Radiative K^0 decays

In the K_L case, interference between CP violating Inner Brem. and CP conserving Direct Emission processes, produces an asymmetry in the distribution of Θ between $\pi^+\pi^$ and e^+e^- decay planes $\ddot{U} \sim 14\%$

- DATA SAMPLE: 98 + 99 $\Re e(\varepsilon'/\varepsilon)$ period + KSHI test runs of 99
- K_S K_L decay rates normalized to $K_L \rightarrow \pi^+ \pi^- \pi^0{}_D$ coming from K_S K_L targets respectively
- detailed Montecarlo study to remove backgrounds and to compute the acceptances of signals and normalization

 $\mathrm{K_L} \to \pi^+ \pi^- e^+ e^-$

1162 candidates, expected background of 36.9 events

$$\implies BR(K_{L} \to \pi^{+}\pi^{-}e^{+}e^{-}) = (3.08 \pm 0.20) \times 10^{-7}$$
$$\implies A_{\Phi}^{S} = (14.2 \pm 3.6) \%$$

621 candidates (99 data) + 56 (98 data -published), expected background of 0.7 events

$$\implies BR(K_S \to \pi^+ \pi^- e^+ e^-) = (4.69 \pm 0.30) \times 10^{-5}$$
$$\implies A_{\Phi}^S = (0.5 \pm 4.3) \%$$

Sub. to EPJ

The results are in good agreement with the theoretical predictions Large asymmetry observed in the angular correlation between $\pi^+\pi^-$ and e^+e^- decay planes $\rightarrow \text{manifestation of indirect CP violation}$ No asymmetry observed in the K_S channel (as expected)

$$\chi PT$$
 and $K_L \rightarrow \pi^0 \gamma \gamma$ and $K_S \rightarrow \gamma \gamma$

 $O(p^4)$ diagrams:

Similarities in these two decays:

• $O(p^2) = 0, O(p^4)$ is unambiguously predicted by χPT (<5% precision)

• at $O(p^6)$:

 $\gamma\gamma$ normalized to $\pi^0\pi^0 \to {\rm most}$ systematics cancel

2000 KSHI data

 ${\sim}7500$ estimated events in the signal region $-1~m < z_{vertex} < 5~m$

main background:

- $2\pi^0$ with only 2 reconstr. clusters
- irreducible $K_L \rightarrow \gamma \gamma ~(\sim 1.5 \text{ times } K_S)$

► use $K_L \rightarrow 3\pi^0$ to estimate K_L flux, and 2000 K_L run to measure $\frac{\Gamma(K_L \rightarrow \gamma \gamma)}{\Gamma(K_L \rightarrow 3\pi^0)}$

$$\Rightarrow$$

$$BR(K_S \to \gamma \gamma) = (2.78 \pm 0.06_{stat} \pm 0.02_{MCstat} \pm 0.04_{syst}) \times 10^{-6}$$

Phys.Lett.B551 (2003)

This result differs by 30% from
$$O(p^4) \chi PT$$
 prediction \implies indication of large $O(p^6)$ contribution

R. Arcidiacono - Results from NA48

 $\mathbf{SuGRA20}$

 $K_S \rightarrow \gamma \gamma$ measurements

 $K_L, K_S \rightarrow \pi^0 \gamma \gamma$ measurements

The NA48/1 - phase II

NA48/1: high intensity neutral short beam experiment $(mainly dominated by K_{S} and neutral Hyperons)$

NA48 detector, modified $K_{\rm S}$ beam line, more powerful DAQ

Physics motivations

- Search for $K_S \to \pi^0 e^+ e^-$, $K_S \to \pi^0 \mu^+ \mu^-$ decays
- Measure semi-leptonic and radiative Hyperons decays, improving experimental results on $\Xi^0 \to \Sigma^+ e^- \nu$, $\Xi^0 \to \Sigma^+ \mu^- \nu$, $\Xi^0 \to \Sigma^0 \gamma$, $\Xi^0 \to \Lambda \gamma$
- Study other K_S and Hyperon rare decays

Proposal goal: reach a SES of $2-3 \times 10^{-10}$ for $K_S \to \pi^0 e^+ e^-$

Experimental set-up

- K_S beam produced by $\sim 5 \times 10^{10}$ proton per pulse (500 times more than ε'/ε config.) Accidental rate reduced by photon converter + sweeping magnet after the target
- detector prepared to maximize the particles flux
- DAQ speed up by some upgrades \rightarrow double bandwidth

NA48/1: 2002 data taking

From July 18th to September 18th:

Successful data taking: data quality is good!

Analysis well advanced, both in the Kaon and in the Hyperon sector.

R. Arcidiacono - Results from NA48

- ► In 4 years of data taking, NA48 measured the direct CP violation parameter $\Re \mathfrak{e}(\varepsilon'/\varepsilon) = (14.7 \pm 2.2) \times 10^{-4}$, with the proposed accuracy. The result is 6.7 σ from 0
- → $\delta_L(e)$ has been measured with competitive precision, η_{000} improved by an order of magnitude
- → K_S lifetime, K mass, η mass measured with similar or better precision. η mass 4.2 σ from current world average

On rare decays, several measurements testing χPT predictions have been done.First observation of $K_S \rightarrow \pi^0 \gamma \gamma$

Active program to measure ${\rm K}_{\rm S}$ rare decays and CP violation in the ${\rm K}^{\pm}$ decays $\boxed{\rm NA48/2!}$