Rare Kaons and Hyperons decays

Massimo Lenti INFN – Sezione di Firenze on behalf of the CERN NA48 collab.

Plan of the presentation

- The CERN Kaons/Hyperons facility: NA48
- $K_L \rightarrow e^+ e^- \gamma$
- $K_L \rightarrow e^+ e^- e^+ e^-$
- $K_S \rightarrow \pi^0 e^+ e^-$
- $K_S \rightarrow \pi^0 \mu^+ \mu^-$
- $\Xi^0 \rightarrow \Lambda \gamma$
- $\Xi^0 \rightarrow \Sigma^+ e^- v$

The CERN facility:NA48

- Built for the precise measurement of direct CP violation in neutral Kaon decays (Re(ε'/ε))
- Goal reached in 2001, final (Re(ε'/ε)) in 2002
- Now: use detector to study K_L, K_S, K[±] and hyperon decays

Fixed target experiment with 400-450 GeV protons from SPS

The CERN facility:NA48 (II)

Main detector components:

- Magnet Spectrometer
- Two drift chambers each before and after spectrometer magnet
- Momentum resolution: <1% for 20 GeV/c tracks</p>
- Anticounters for photons, muons
 - Liquid Krypton Calorimeter: energy resolution:

$$\frac{\Delta E}{E} = \frac{3.2\%}{\sqrt{E[GeV]}} \oplus \frac{90 \text{ MeV}}{E} \oplus 0.42\%$$

The CERN facility:NA48 (III)

<u>NA48</u>: 1997-2001

- Direct CP violation (Re(ε'/ε))
- K_L decays

<u>NA48/1</u>: 2000,2002

- High intensity run for rare K_S decays
- Hyperon decays

NA48/2: 2003-2004

- Search for DCPV in $K^{\pm} \rightarrow 3\pi$ decays
- Rare K[±] decays
- Semileptonics K[±] decays

Why Kaons again?

A unitarity triangle in the kaon system :

M.Lenti HEP-MAD 04

 $K_L \rightarrow e^+ e^- \gamma$

$K_L \rightarrow e^+ e^- \gamma$ (II)

- Form factor measure structure of γ* vertex
- In the BMS model: α_{K*} measure the relative strenght of intermediate pseudoscalar and vector meson contribution
- α_{K*} can be fitted from the x distribution

 $K_{I} \rightarrow e^{+}e^{-}\gamma$ (III) $\alpha_{\kappa^*} = -0.207 \pm 0.019 \pm 0.017$ **Preliminary:**

- 1998, 1999 data
- 4 LKr clusters, 4 charged tracks
- electrons ID: E/P
- about 200 events selected

$K_L \rightarrow e^+e^-e^+e^-$ (II)

 $BR(K_{L} \rightarrow e^{+}e^{-}e^{+}e^{-}) = (3.30 \pm 0.24_{stat} \pm 0.14_{syst} \pm 0.10_{norm}) \times 10^{-8} \text{ [preliminary]}$

$K_S \rightarrow \pi^0 |+|-$

CP conserving part:

NA48 measurement of BR($K_L \rightarrow \pi^0 \gamma \gamma$):

- $\rightarrow BR(K_L \rightarrow \pi^0 e^+ e^-)_{CP \text{ cons.}} = 0.47^{+0.22}_{-0.18} \times 10^{-12}$
- $\rightarrow BR(K_L \rightarrow \pi^0 \mu^+ \mu^-)_{CP \text{ cons.}} \approx 10^{-12}$
- Direct CP violating part:

proportional to η or $Im(\lambda_t)$

- \rightarrow BR(K_L $\rightarrow \pi^{0}$ I⁺I⁻)_{DCP viol.}~ few×10⁻¹²
- Indirect CP violating part:

$$\rightarrow \mathsf{BR}(\mathsf{K}_{\mathsf{L}} \rightarrow \pi^{0}\mathsf{I}^{+}\mathsf{I}^{-})_{\mathsf{ICP viol.}} = |\varepsilon|^{2}(\tau_{\mathsf{L}}/\tau_{\mathsf{S}}) \mathsf{BR}(\mathsf{K}_{\mathsf{S}} \rightarrow \pi^{0}\mathsf{I}^{+}\mathsf{I}^{-})$$

 $K_S \rightarrow \pi^0 e^+ e^-$

- Blind analysis: control and signal region masked
- Apply conservative cut m_{ee}>0.165 GeV

 $K_{S} \rightarrow \pi^{0} e^{+} e^{-} (II)$

■ Background from $K_L \rightarrow ee\gamma\gamma$: use 2001 data $\rightarrow 0.075$ evts in signal region

 Background from fragments of two decays:
Δt = time between fragments Control region: 3<Δt<50 ns Signal region: Δt<3 ns

$$BR(K_{s} \to \pi^{0}e^{+}e^{-})_{(m_{ee} > 0.165GeV)} = (3.0^{+1.5}_{-1.2}(stat) \pm 0.2(syst)) \times 10^{-9}$$

Published in PLB576(2003) 43

 $K_{S} \rightarrow \pi^{0} \mu^{+} \mu^{-}$

- Background from K_L→ π⁺ π⁻ π⁰ with pion decay in flight studied with MC and τ/τ_S cut removed → no MC evt in signal region (22×2002 statistics generated)
- Background from $K_L \rightarrow \mu^+ \mu^- \gamma \gamma$ suppressed by BR(≈10⁻⁹) and pion mass cut \rightarrow 0.04 ±0.04 evts expected in signal region

$K_{S} \rightarrow \pi^{0} \mu^{+} \mu^{-} (II)$

Background from fragments of two decays $(\Delta t = t_{tracks} - t_{\gamma\gamma})$ Control region: -115< Δt <-3 ns, 3< Δt <60 ns Signal region: -1.5< Δt <1.5 ns

 $K_{S} \rightarrow \pi^{0} \mu^{+} \mu^{-} (III)$ 0.170.17O.16 (GeV) 0.15 0.15 g[≿]0.14 E[≥]0.14 0.13 0.13 0.12 0.12 0.11 0.2 0.11 0.52 0.35 0.5 0.25 0.3 0.440.46 0.48 0.540.4(GeV) m_{μμπ}(GeV) $m_{\mu\mu}$

6 events found in the signal region with a background $0.22^{+0.19}_{-0.12}$ BR(K_s $\rightarrow \pi^0 \mu^+ \mu^-$) = $\left(2.9^{+1.5}_{-1.2}(\text{stat}) \pm 0.2(\text{syst})\right) \times 10^{-9}$

Submitted to PLB

$K_{S} \rightarrow \pi^{0} I^{+} I^{-} (comments)$

Assuming vector interaction and a unit form factor: $BR(K_S \rightarrow \pi^0 e^+ e^-) = (5.8^{+2.8}_{-2.3}(stat) \pm 0.3(syst) \pm 0.8(theor)) \times 10^{-9}$

 $BR(K_S \to \pi^0 l^+ l^-) \propto |W(z)|^2 \qquad W(z) \sim (a_s + b_s \ m_{ll}^2 / m_K^2)$

Assuming Vector Meson Dominance: $b_s/a_s = m_K^2/m_\rho^2 = 0.4$ D'Ambrosio, Ecker, Isidori, Portoles JHEP08 (1998) 004

 $BR(K_S \to \pi^0 e^+ e^-) = 5.2 \times 10^{-9} |a_s|^2 \Rightarrow |a_s| = 1.06^{+0.26}_{-0.21} \pm 0.07$ $BR(K_S \to \pi^0 \mu^+ \mu^-) = 1.2 \times 10^{-9} |a_s|^2 \Rightarrow |a_s| = 1.54^{+0.40}_{-0.32} \pm 0.06$

Leaving b_s and a_s free:

use both BR for a log-likelihood fit

Results compatible with each other and VMD Statistics too low to determine bs

$K_L \rightarrow \pi^0 I^+ I^-$ (predictions)

Construct. interf.

$\Xi^0 \rightarrow \Lambda \gamma$

1999 High intensity K_s run (two days)

730 $\Xi^0 \rightarrow \Lambda \gamma$ with background of 58.2±7.8 evts

 $BR(\Xi^0 \to \Lambda \gamma) = (1.16 \pm 0.05_{stat} \pm 0.06_{syst}) \times 10^{-3}$

- background subtraction: main systematics (use mass sidebands)
- use an isotropic MC distribution
- test the method with $\Xi^0 \rightarrow \Lambda \pi^0$

decay asymmetry:

 $\alpha(\Xi^0 \to \Lambda \gamma) = -0.78 \pm 0.18_{\text{stat}} \pm 0.06_{\text{syst}}$

Published in PLB584(2004) 251

Ξ^0 Hyperons in 2002

- 2002 run period
- Total flux: > 2×10⁹ Ξ⁰ decays in fiducial volume
- $\Xi^0 \rightarrow \Lambda \pi^0$ from min bias trigger (downscaled by 35, used for norm.)

Ξ⁰ beta decay (III)

Crucial items:

- Montecarlo simulation
- Trigger efficiency: (83.8±2.2)% [signal], 99.5% [normalization]

Preliminary NA48/1 result (6238 evts): BR($\Xi^0 \rightarrow \Sigma^+ e^- \nu$) = (2.51 ± 0.03_{stat} ± 0.11_{syst})×10⁻⁴

|V_{us}| "crisis": is CKM matrix unitary?

Before....

NA48 |V_{us}| measurements

• $K_L \rightarrow \pi e v$ (submitted to PLB): $|V_{us}|_{K_{e3}^0} = 0.2187 \pm 0.0028$

[1999 K_L 2-days run] $\left[f_{+}(0)=0.981\pm0.010\right]$

- $K^{\pm} \rightarrow \pi^{0} e^{\pm} v$ (preliminary): [2003 run] $|V_{us}|_{K_{e3}^{+}} = 0.2241 \pm 0.0026$ $[f_{+}(0)=1.002\pm0.010]$
- $\Xi^{0} \rightarrow \Sigma^{+} e^{-} v$ (preliminary): $|V_{us}|_{\Xi^{0}_{\beta}} = 0.214 \pm 0.06^{+0.030}_{-0.025}$

[2002 run] $\begin{bmatrix} f_1(0)=1; & g_1/f_1=1.32^{+0.21}_{-0.17}\pm 0.05 \end{bmatrix}$

Slide borrowed by J.Ellis'talk in ICHEP04 in Beijing....

Conclusions

- Kaons (and Hyperons) physics still alive
- Important contribution to Flavor physics (unitarity triangle, |V_{us}|)
- PV, CPV and DCPV first discovered in K
- Many results to be retrieved from NA48 data yet
- NA48 "far" future: K⁺ $\rightarrow \pi^+ \nu \nu$