Direct CP Violation measurements with the NA48 experiment: status and perspectives

Marcella Scarpa

on behalf of the NA48 Collaboration

CAGLIARI, CAMBRIDGE, CERN, DUBNA, EDINBURGH, FERRARA, FIRENZE, MAINZ, ORSAY, PERUGIA, PISA, SACLAY, SIEGEN, TORINO, VIENNA, WARSAW

11th Lomonosov Conference - Moscow

CP Violation in K⁰ system

Strangeness eigenstates $K^{0}(\overline{s}d) S=+1 CP(K^{0}) = \overline{K^{0}}$ $\overline{K^{0}}(s\overline{d}) S=-1 CP(\overline{K^{0}}) = K^{0}$ CP eigenstates $K_1 \quad CP = +1 \Rightarrow \pi\pi$ $K_2 \quad CP = -1 \Rightarrow \pi\pi\pi$ $K_{1,2} = (K^0 \pm \overline{K^0}) / \sqrt{2}$

Mass eigenstates K_S , K_L CP conserved: $K_S \equiv K_1 \& K_L \equiv K_2$ $K_S \div K_1 + \varepsilon K_2$ $K_L \div K_2 + \varepsilon K_1$ Direct CPV, ε' $|A(K^0 \rightarrow F)| \neq |A(\overline{K^0} \rightarrow \overline{F})|$ $Mass eigenstates <math>K_S$, K_L $K_L \equiv K_2$ $K_L = K_2$ $K_L \Rightarrow \pi\pi$ Christenson, Cronin, Fitch, Turlay $\varepsilon = 2.3 \times 10^{-3}$, indirect CPV Observe direct CPV through the interference of final states $\pi\pi$ I=0,2

$$\epsilon' = \frac{i}{\sqrt{2}} \Im\left(\frac{A_2}{A_0}\right) \exp\left(i\left(\delta_2 - \delta_0\right)\right)$$

 $\begin{array}{l} CP \ viol \ / \ CP \ cons \\ A(K_L \rightarrow \ \pi^0 \pi^0) \ / \ A(K_S \rightarrow \pi^0 \pi^0 \) = \ \eta_{00} \simeq \epsilon - 2\epsilon' \\ A(K_L \rightarrow \ \pi^+ \pi^-) \ / \ A(K_S \rightarrow \pi^+ \pi^- \) = \ \eta_{+-} \simeq \epsilon + \epsilon' \end{array}$

The double ratio R:

$$\begin{split} \mathbf{R} = |\eta_{00} / \eta_{+-}|^2 = & \frac{\Gamma(K_L \to \pi^0 \pi^0)}{\Gamma(K_S \to \pi^0 \pi^0)} \times \frac{\Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_L \to \pi^+ \pi^-)} & \simeq 1 - 6 \text{Re}(\epsilon' / \epsilon) \end{split}$$

Direct CPV if $\varepsilon' \neq 0 \Rightarrow R \neq 1$

$$\mathbf{R} = \frac{\Gamma(\mathbf{K}_{\mathrm{L}} \to \pi^{0} \pi^{0})}{\Gamma(\mathbf{K}_{\mathrm{S}} \to \pi^{0} \pi^{0})} \mathbf{x} \frac{\Gamma(\mathbf{K}_{\mathrm{S}} \to \pi^{+} \pi^{-})}{\Gamma(\mathbf{K}_{\mathrm{L}} \to \pi^{+} \pi^{-})} \simeq \mathbf{1} - \mathbf{6} \mathbf{R} \mathbf{e} (\mathbf{\epsilon'} / \mathbf{\epsilon})$$

- ► Concurrent $\pi^0 \pi^0$ and $\pi^+ \pi^-$ detection \Rightarrow fluxes cancel
- \triangleright Concurrent K_L and K_S \Rightarrow detection and reconstruction inefficiency cancel
- ⇒ Best cancelation if all 4 modes recorded simultaneously: fluxes, inefficiencies, dead times, accidental losses
- From the same fiducial region (lifetime $\leq 3.5 \tau_{\rm S}$)
- \triangleright Quasi-collinear beams (K_L, K_S)
- > K_L , K_S similar energy spectra (energy range 70-170GeV), analysis in energy bins to minimize remaining differencies
- ➢ Offline lifetime weighting applied to K_L events ⇒ equilize and K_L and K_S decay position distributions
- ⇒ Minimize acceptance correction

High resolution detectors ⇒ small background level

Bkg subtracted \Rightarrow

$$\frac{N(K_L \rightarrow \pi^0 \pi^0)}{N(K_S \rightarrow \pi^0 \pi^0)} \times \frac{N(K_S \rightarrow \pi^+ \pi^-)}{N(K_L \rightarrow \pi^+ \pi^-)}$$

NA48 beams: far (K_L) and near (K_S)

NA48 Detector

Spectrometer

kaon invariant mass in K_S $\rightarrow \pi^+\pi^-$ candidates

Tagger inefficiency: $P(K_S \rightarrow K_L) = \alpha_{SL} \simeq 1 \times 10^{-4}$

Background rejection

Neutral

cut on Rellipse (χ^2 -like varible) veto events with 5th cluster in time

Charged

- $K_{\mu3}$: MuonVeto
- K_{e3} : E/p < 0.8
- 3 bodies and scattering: $(p_t')^2 < (200 \text{MeV/c})^2$

Farget

- pt' 'symmetric' tranverse momentum:
- P_K component \perp line "Target- K Xpoint at DCH1"

Vertex

Analysis

- \succ Reconstruct and count $\pi^0\pi^0$ and $\pi^+\pi^-$
- > Apply dead times offline to all events
- \triangleright Disentangle K_L and K_S
- Subtract remaining background
- Evaluate R and systematics
- Checks and stability of the result

Corrections to be applied

- Charged background
- Neutral background
- Beam scattering background
- Tagging (Neutral Charged difference)
- Triggers inefficiency
- > AKS veto inefficiency
- Energy scale uncertainty
- > Acceptance
- Accidental activity induced losses

NA48 Runs

NA48 changed condition in 2001

Last ɛ'/ ɛ data taking Additional statistics + test intensity related systematics New DCHs and beam pipe(after 1999 implosion) New beam monitors (4 intgration times: 200ns,1µ, 3µ,15µs)

Accidental activity

Accidental activity from beam \Rightarrow event losses

Intensity of K_L beam >> $K_S \Rightarrow K_L$ beam responsible for event losses and losses \propto Intensity of K_L beam

Difference in losses btw C-N and L-S minimized by:

> C-N: simultaneous data taking, dead time applied offline to all modes

> L-S: simultaneous beams: same Intensity (K_L beam) seen by K_S and K_L events

quasi collinear beams, K_S and K_L^w events same detector ilumination

Residual effects $\Rightarrow \Delta R_{accidental}$

Difference btw C -N losses Difference in accidental activity seen by K_L and K_S events

 $\Delta R_{\text{Int}} = \Delta (\text{C-N})^* \Delta (\text{L-S})$ $= (1.0 \pm 0.5)\% * (0 \pm 1)\% (2001)$ K_S - K_L deterctor illumination difference, different detector parts ⇒different losses e.g. At the spectrometer

 $\Delta R_{\text{Illum}} = \pm 3.0 \times 10^{-4}$ (2001)

Beam monitors and losses vs K_L beam intensity

Beam monitors (K_L and K_S) to trigger "random" events (~10+10 per burst) dowscaled and delayed (3 SPS cycles, same intensity conditions) : record accidental activity proportionally to K_L and K_S beam intensity

2001: Integrators (K_L and K_S) to measure beam intensity, 4 integration times each

200ns, 1µs, 3µs, 15µs

	Correction to R	$\operatorname{Re}(\varepsilon'/\varepsilon)=(1-R)/6$	
	1998-99	2001	
Tagging ineff. 0	ί _{SL} ±3.0	±3.0	
Accidental tagging α_{LS} 8.3±3.4		6.9±2.8 ↓	
$\pi^+\pi^-$ trigger inef	f. -3.6 ± 5.2	5.2±3.6 ↓ Intens	ity
Accidental activity		related	d l
ΔR_{Int}	±3.0	±1.1 ↓	
ΔR_{Geom}	±3.0	±3.0	
$\pi^+\pi^-$ background	16.9±3.0	14.2±3.0	
$\pi^0\pi^0$ background	-5.9 ± 2.0	-5.6±2.0	
beam scattering	-9.6 ± 2.0	-8.8±2.0	
$\pi^+\pi^-$ scale	2.0 ± 2.8	±2.8	
$\pi^0\pi^0$ scale	± 5.8	±5.3	
AKS ineff.	1.1±0.4	1.2±0.3	
Acceptance	$26.7 \pm 4.1 \pm 4.0$	21.9±3.5±4.0	
KS in time activit	ty ±1.0	±1.0	
TOTAL	+35.9±8.1±9.6	+35.0±6.5±9.0↓	stat, sys

$Re(\epsilon'/\epsilon)$ experimental results

NA31 = $(23.0 \pm 6.5)x10^{-4}$ E731 = $(7.4 \pm 5.9)x10^{-4}$ KteV = $(20.7 \pm 2.8)x10^{-4}$

 $Re(\epsilon'/\epsilon)_{(97-99)} = (15.3 \pm 2.6) \times 10^{-4}$ $Re(\epsilon'/\epsilon)_{(2001)} = (13.7 \pm 3.1) \times 10^{-4}$ $Re(\epsilon'/\epsilon)_{(97-01)} = (14.7 \pm 2.2) \times 10^{-4}$

 \Rightarrow proposal goal reached

V.Fanti et al, Phys. Lett. B 465, 335 (1999)A.Lai et al. Eur. Phys. J. C 22, 231 (2001)J.R.Batley et al. Physics Letters B 544, 92 (2002)

⇒ world average $\text{Re}(\epsilon'/\epsilon) = (16.6 \pm 1.6) \times 10^{-4}$ $\chi^2/\text{ndf} = 6.3/3 \ 10\%$ probability

NA48/2 simultaneous K⁺ and K⁻ beams

CERN, Chicago, Dubna, Ferrara, Firenze, Mainz,

Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna **Main Goal:**

Direct CP violation: A_g **slope asymmetry** measurement in

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$ $\sim 2x10^{9} \text{ events} \implies \delta(A_{g}) \le 2.2x10^{-4} \quad (limited by \text{ statistics})$

Theory: A_g from 10⁻⁶ to 10⁻⁴

A⁰_g slope asymmetry measurement in and $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ $\sim 1 \times 10^{8} \text{ events} \Rightarrow \delta(A^{0}_{g}) \leq \text{ few } \times 10^{-4} \text{ (statistics)}$ Direct CP violation \Rightarrow difference btw K⁺ and K⁻ decay matrix elements Compare K⁺ $\rightarrow \pi^{+} \pi^{+} \pi^{-}$ relative to K⁻ $\rightarrow \pi^{-} \pi^{+} \pi^{-}$ Compare K⁺ $\rightarrow \pi^{+} \pi^{0} \pi^{0}$ relative to K⁻ $\rightarrow \pi^{-} \pi^{0} \pi^{0}$

Matrix element K $\pm \rightarrow (3\pi) \pm$ can be parametrized as

$$| \mathbf{M}(u,v) |^2 = 1 + \mathbf{g}u + \mathbf{h}u^2 + \mathbf{k}v^2$$

 $u = (s_3 - s_0)/m_{\pi^2}$, $v = (s_1 - s_2)/m_{\pi^2}$, $s_0 = (s_1 + s_2 + s_3)/3$, $s_i = (P_K - P_i)^2$ i=1,2,3 (odd π)

CP conservation: same g,h,k for $K^+ \rightarrow (3\pi)^+$ and $K^- \rightarrow (3\pi)^-$ CP violation: $A_g = (g^+ - g^-)/(g^+ + g^-) \neq 0$

Measure:
$$R(u) = \frac{\int dv |M^+(u,v)|^2}{\int dv |M^-(u,v)|^2} \approx 1 + u * (g^+ - g^-)$$

Up to now... and more..

➢ Ford (1970) -0.0070 ± 0.0053 (80% statistical, 3M events)

- > FNAL E871 (2000, unpublished, 54M events) $(2.2\pm1.5\pm3.7)\times10^{-3}$
- \blacktriangleright KLOE 2000-2002: 400pb⁻¹ available with 10⁶ K⁺K⁻ per pb⁻¹

►NA48 first experiment with simultaneous K ± beams.

Goal ~2x10⁹ events $\Rightarrow \delta(A_g) \leq 2.2x10^{-4}$

Ag⁰ K[±]
$$\rightarrow \pi^{0} \pi^{0} \pi^{\pm}$$
 B.r. (1.73 ±0.04)%

 $PDG 0.03 \pm 0.05$

- > Protvino prel. $(0.3\pm2.5\pm1.5)x10^{-3} < 0.5M$
- ➤ KLOE 2000-2002: 400pb⁻¹ available with 10⁶ K+K⁻ per pb⁻¹
- > NA48: goal ~1x10⁸ events $\Rightarrow \delta(A_g^0) \leq \text{few x10}^{-4}$

NA48/2: new beam lines

spill 4.8/16.8 s

General considerations

Symmetry between K^+ , $K^- \Rightarrow$ cancellation of several systematic effects

- Simultaneous K+, K⁻ beams (first experiment!)
- Simultaneous K⁺, K⁻ decays data taken, same decay region
- Beam adjustment: steering and focusing
- > Achromat symmetry: inverted every week
- Alignment beam-spectrometer
- > High precision spectrometer (2dch-magnet-2dch, P_T kick = 120 MeV/c)
- Magnet polarity inverted every day
- High precision e.m. Calorimetr (Lkr)
- **K** beam spectrometer (Kabes) allows reconstructions of events with missing particles
- > Analysis in K momentum bins

\Rightarrow accurate K⁺ - K⁻ comparisons are possible

Focused beams

Effect on A_g coming from differences in K⁺/K⁻ acceptance at the spectrometer (DCH1)

Steering: bring K⁺ and K⁻ beams onto a common axis at final collimator and DCH1 (with a precision of ~ ±0.3mm) **AND**

Focusing: similar and gentle convergence of each beam in both planes. Small angles of convergence: ~ 0.04mrad (<1mm displacement from Dch1 to Dch4) Avoid "production angle-momentum" correlation in the vertical plane

Station 1(up) $2(\text{down}) \quad 3(\text{both})$ Stripcounts Entries 17280 2200 Kabes 2000 1800 1600 1400 **5**200 പ്പം 800 Eventsize 600 400 E 40000 200 35000 100 150 Chan nei number 50 200 250 30000 25000 \$000 15000E 10000E 5000

> 300 Hits in event

400

500

200

100

Channel / Time

600

500

2 400

100

영

50

100 150 Chan nel number 200

250

Enities 2.302017e+0

10

 P_K measure to reconstruct 3π decays in which one π is not detected

(and resolve K_{e4} reconstruction ambiguity)

MSGC, 1mm strips max-rate: 2MHz/strip highest flux: 30MHz X(drift), Y(strips) measure $\sigma_X \sim 50 \mu m$, $\sigma_Y \sim 80 \mu m$, $\sigma_t \sim 0.7 n$ $\Rightarrow \sigma(\Delta p)/p < 1\%$

Proposal:120 days 2003: ~ 80 days but

Acceptance for different decay modes (5-50)% ~35% $\pi^{\pm} \pi^{+} \pi^{-}$; ~10% $\pi^{\pm} \pi^{0} \pi^{0}$

Conclusions

NA48 Direct CP violation Re(ϵ'/ϵ)₍₉₇₋₂₀₀₁₎ = (14.7 ± 2.2)x10⁻⁴

NA48/2 Direct CP violation running now.....

> But not only Direct CPV! See next NA48 talk (G.Collazuol)!

> > 11th Lomonosov Conference - Moscow