Recent Results

From the NA48 Experiment at CERN

29 January 2003

Phil Rubin for the NA48 Collaboration

• DIRECT CP VIOLATION

• TESTS of χ_{PT} THEORY

HISTORY

- NA31 publish 3σ result $[Re(\epsilon'/\epsilon) = (23.0 \pm 6.5) \times 10^{-4}];$ E731 publish null result $[Re(\epsilon'/\epsilon) = (7.4 \pm 5.9) \times 10^{-4}]$
- **1990:** NA48 proposal
- 1997: ~ 0.5 million $K_L \to \pi^0 \pi^0$ [$Re(\epsilon'/\epsilon) = (18.5 \pm 7.3) \times 10^{-4}$] (published 1999)
- 1998-1999: Improved trigger and DAQ $\Rightarrow \sim 3 \text{ million } K_L \rightarrow \pi^0 \pi^0$ $[Re(\epsilon'/\epsilon) = (15.0 \pm 2.6) \times 10^{-4}] \text{ (published 2001)}$
- 1999 (November): Beam tube implosion; drift chambers destroyed
- 2000: Neutral data only $(\epsilon'/\epsilon$ cross-checks and high intensity K_S beam)
- 2000-2001: Drift chamber reconstruction
- 2001: ~ 1.5 million $K_L \to \pi^0 \pi^0$ (different beam conditions) $[Re(\epsilon'/\epsilon) = (13.7 \pm 3.1) \times 10^{-4}]$ (published 2002)
- 2002: High intensity K_S beam (new drift chamber readout electronics)
- 2003: Charged Kaon program

THE SIMULTANEOUS K_L AND K_S BEAMS

Not to scale !

	1998-1999	2000*	2001	
Proton Momentum [GeV/c]	450	400	400	
SPS Cycle Time [s]	14.4	14.4	$16.8~\mathrm{s}$	
Spill Length (Effective) [s]	2.4(1.7)	3.2(2.2)	5.2(3.6)	
Duty Cycle	0.17	0.22	0.31	
K_L Beam Intensity $[(\times 10^{12}) \text{ ppp}]$	1.5	1.0	2.4	
K_S Beam Intensity $[(\times 10^7) \text{ ppp}]$	3.0	1.0×10^2	5.0	

Running Conditions

* No drift chambers

NA48 detectors

Magnetic Spectrometer

 $2 \mid 2 \text{ drift chambers} \mid \text{magnet} \rightarrow 265 \text{ MeV} p_t \text{ kick}$

Liquid Krypton Calorimeter

 $\frac{\sigma(E)}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{0.09}{E} \oplus 0.42\% \quad \text{(E in GeV)}$

- Quasi-homogeneous detector: 10 m³ lkr $(X_0 = 4.7 \text{ cm})$
- 13212 cells
- Granularity 2×2cm²
- Depth 1.25 m $(\approx 27 X_0)$
- Projective geometry pointing to decay region (≈ 114 m upstream)

Accordion geometry

Neutral Reconstruction

Neutral Kaons

• Production in Strangeness Eigenstates; Decay in CP Eigenstates

$$|K^{0}\rangle = \frac{1}{\sqrt{2}}(|K_{1}\rangle + |K_{2}\rangle), \ (S = +1)$$
$$|\overline{K^{0}}\rangle = \frac{1}{\sqrt{2}}(|K_{1}\rangle - |K_{2}\rangle), \ (S = -1)$$
$$CP|\pi\pi\rangle = +|\pi\pi\rangle \quad CP|\pi\pi\pi\rangle = -|\pi\pi\pi\rangle$$

- $K_1 \to \pi\pi$ and $K_2 \to \pi\pi\pi$ (allowed)
- $K_1 \not\rightarrow \pi\pi\pi$ and $K_2 \not\rightarrow \pi\pi$ (not allowed)

But CP NOT Conserved

- About 1% of the time, a " K_2 " $\rightarrow \pi\pi$
- Indirectly?

$$|K_S^0\rangle = \frac{1}{\sqrt{1+\epsilon^2}}(|K_1\rangle + \epsilon |K_2\rangle)$$
$$|K_L^0\rangle = \frac{1}{\sqrt{1+\epsilon^2}}(\epsilon |K_1\rangle + |K_2\rangle)$$
$$|\epsilon| = (2.28 \pm 0.02) \times 10^{-3}$$

• Directly?

$$\begin{split} \Gamma(K^0 \to F) &\neq \Gamma(\overline{K^0} \to \overline{F}) \\ \frac{\Gamma(K_L^0 \to \pi^0 \pi^0) / \Gamma(K_S^0 \to \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^+ \pi^-) / \Gamma(K_S^0 \to \pi^+ \pi^-)} \neq 1 \end{split}$$

Direct CP Violation

• $\pi\pi$ from K^0 can have I = 0 or 2

Two Amplitudes: A_0 and A_2

Direct violation through decay penguin diagrams $\Rightarrow \varepsilon'$ parameter

• Define ratio of CP-violating / CP-conserving amplitudes:

$$\frac{A(K_L \to \pi^+ \pi^-)}{A(K_S \to \pi^+ \pi^-)} \equiv \eta_{+-} = \epsilon - \epsilon'$$
$$\frac{A(K_L \to \pi^0 \pi^0)}{A(K_S \to \pi^0 \pi^0)} \equiv \eta_{00} = \epsilon - 2\epsilon'$$

 ϵ' (direct CP violation parameter) $\approx \frac{i}{\sqrt{2}} Im\left(\frac{A_2}{A_0}\right) e^{i(\delta_2 - \delta_0)}$

- Theoretical predictions: few $10^{-4} \le |\epsilon'/\epsilon| \le 2 \times 10^{-3}$
- Experimental observable:

$$\frac{R}{\Gamma(K_L^0 \to \pi^0 \pi^0) / \Gamma(K_S^0 \to \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^+ \pi^-) / \Gamma(K_S^0 \to \pi^+ \pi^-)} = 1 - 6Re(\epsilon'/\epsilon)$$

Analysis Philosophy and Approach

All effects cancel to first order

- Measure R in (5 GeV-wide) energy bins
- Weight K_L lifetime
- Apply charged deadtime fraction to all data
- Weight K_S flux
- Tag parent and correct for misidentification
- Identify decay channels and subtract backgrounds
- Correct for non-linearities and energy scale
- Compute residual acceptance differences
- Evaluate residual differences in accidental rates

Event statistics

2001 statistics:

$$K_L \to \pi^0 \pi^0 : 1.55 \times 10^6 K_S \to \pi^0 \pi^0 : 2.16 \times 10^6 K_L \to \pi^+ \pi^- : 7.14 \times 10^6 K_S \to \pi^+ \pi^- : 9.61 \times 10^6$$

Summary of corrections

Corrections on R and systematic uncertainties (units 10^{-4})

Source	2001	98-99
$\pi^+\pi^-$ background	14.2 ± 3.0	16.9 ± 3.0
$\pi^0 \pi^0$ background	-5.6 ± 2.0	-5.9 ± 2.0
beam scatt. backgr.	-8.8 ± 2.0	-9.6 ± 2.0
Tagging ineffic.	± 3.0	± 3.0
Accidental tagging	6.9 ± 2.8	8.3 ± 3.4
$\pi^+\pi^-$ reconstruction	± 2.8	$2.0\pm$ 2.8
$\pi^0\pi^0$ reconstruction	± 5.3	± 5.8
AKS inefficiency	1.2 ± 0.3	1.1 ± 0.4
Accept. corr.	21.9 ± 3.5	26.7 ± 4.1
	± 4.0	± 4.0
$\pi^+\pi^-$ trigger ineffic.	5.2 ± 3.6	-3.6 ± 5.2
Accidental event losses:		
intensity diff	± 1.1	± 3.0
illumination diff	± 3.0	± 3.0
K_S in-time activity	± 1.0	± 1.0
All	$+35.0\pm 6.5$	$+35.9\pm 8.1$
	± 9.0	\pm 9.6

Errors are pure stat or pure syst

Systematic checks

Precise evaluation of systematics to 10^{-4} level is essential

R stability against cut variations

 $R = 0.99181 \pm 0.00147 (stat) \pm 0.00110 (syst)$

NA48 Results

1997
$$\operatorname{Re}(\epsilon'/\epsilon) = [18.5 \pm 4.5(stat) \pm 5.8(syst)] \times 10^{-4}$$
98/99 $\operatorname{Re}(\epsilon'/\epsilon) = [15.0 \pm 1.7(stat) \pm 2.1(syst)] \times 10^{-4}$ 2001 $\operatorname{Re}(\epsilon'/\epsilon) = [13.7 \pm 2.7(stat) \pm 1.5(syst)] \times 10^{-4}$

AVERAGE $\operatorname{Re}(\epsilon'/\epsilon) = [14.7 \pm 2.2] \times 10^{-4}$

Note: small correlation between systematic uncertainties accounted for in weighted average

Summary of Measurements

Chiral Perturbation Theory

- Low energy (scale $\leq 4\pi F_{\pi} \approx 1.2 \text{ GeV}$) effective field theory: Perturbative expansions in momentum and mass
- Chiral symmetry broken: $SU(3)_L \times SU(3)_R \to SU(3)_V$ \Rightarrow Eight pseudoscalar Goldstone bosons (π, η, K)
- Boson mass $\neq 0$ [(soft) explicit breaking]
- Higher order bosonic loops diverge, but compensated by counter-terms with (empirically determined) effective couplings
- Ought to describe kaon decays: eg., $K_{L,S} \rightarrow \pi^0 \gamma \gamma, K_{L,S} \rightarrow \gamma \gamma$

$$K_L^0 \to \pi^0 \gamma \gamma$$
 and $K_S^0 \to \gamma \gamma$

• $\mathcal{O}(p^2) = 0$ for both

• No counter-terms required for either: $\mathcal{O}(p^4)$ predictions unambiguous to better than 5%

• PDG:

$$BR(K_S^0 \to \gamma \gamma) = (2.5 \pm 0.4) \times 10^{-6}$$

$$BR(K_L^0 \to \pi^0 \gamma \gamma) = (1.68 \pm 0.10) \times 10^{-6}$$

 $K_L^0 \to \pi^0 \gamma \gamma$

• $\mathcal{O}(p^4)$ misses both the observed branching fraction, $(1.68 \pm 0.10) \times 10^{-6}$, and events with $m_{\gamma\gamma} < 0.2 \text{ GeV}$

• $\mathcal{O}(p^6)$ terms (including vector meson exchange) **predict**:

• a_v , extracted from $m_{\gamma\gamma}$ distribution, determines CP-conserving amplitude in $K_L \to \pi^0 e^+ e^-$

$K_L^0 \to \pi^0 \gamma \gamma$ Analysis

- Normalization channel $K_L^0 \to \pi^0 \pi^0$ collected with same trigger
- Reject $2\pi^0$ background:
 - $-|m_{12} m_{\pi^0}| < 3 \text{ MeV} \text{ and } |m_{34} m_{\pi^0}| > 25 \text{ MeV}$
 - Transverse momentum of lowest energy unpaired photon $>40~{\rm MeV}$
 - Subtract remnants with tails of $K_S^0 \to \pi^0 \pi^0$ distribution
- Reject $3\pi^0$ background (from missed or merged showers):
 - Shower width

– Maximum vertex position from each possible combination

• Subtract pile-up using COG sidebands

 $K_L^0 \to \pi^0 \gamma \gamma$ Results

• ~ 2500 candidates

• $a_v = -0.46 \pm 0.03(stat) \pm 0.03(syst) \pm 0.02(theo)$ (see plot)

 $\Rightarrow BR(K_L \to \pi^0 e^+ e^-)_{CP-C} = (4.7 \pm 2.2) \times 10^{-13}$

 $\Rightarrow BR(K_L \to \pi^0 \gamma \gamma) = [1.36 \pm 0.03(stat) \pm 0.03(syst) \pm 0.03(norm)] \times 10^{-6}$

[Note: KTeV finds $a_v = -0.72 \pm 0.08$, \Rightarrow non-negligible contribution to $BR(K_L \to \pi^0 e^+ e^-)_{CP-C}$, and $BR(K_L \to \pi^0 \gamma \gamma) = (1.68 \pm 0.10) \times 10^{-6}$]

In bins of m_{34} [MeV/c²]: a) 30 - 110; b) 160 - 140; c) 240 - 260

$K_S^0 \to \gamma \gamma$

- Year 2000 data: single beams, no drift chambers
- Normalize to $K_S^0 \to \pi^0 \pi^0$
- Irreducible background: $K_L^0 \rightarrow \gamma \gamma$

$$\frac{N(K_L^0 \to \gamma \gamma)}{N(K_S^0 \to \gamma \gamma)} \approx 1.5 \text{ in decay volume}$$

Knowledge of this ratio limited by 3% K_L BR uncertainty: (2.77 ± 0.08) × 10⁻³

 $\Rightarrow \text{Improve } K_L \text{ BR measurement relative to } K_L^0 \to \pi^0 \pi^0 \pi^0 \\ [BR(K_S^0 \to \pi^0 \pi^0 \pi^0) \ll 1]$

- Collect five data samples:
 - far target: $\gamma\gamma$, $3\pi^0$
 - near target: $\gamma\gamma$, $2\pi^0$, $3\pi^0$

• Count
$$3\pi^0$$
 events $\Rightarrow N(K_L^0 \to \gamma\gamma)$
 $\Rightarrow N(K_S^0 \to \gamma\gamma) = N(K^0 \to \gamma\gamma) - N(K_L^0 \to \gamma\gamma)$

 $\frac{\Gamma(K_L^0 \to \gamma \gamma)}{\Gamma(K_L^0 \to 3\pi^0)}$

- Far-target data
- \bullet Restrict decay volume to that of $K^0_L \to \gamma \gamma$
- Determine hadronic and other charged backgrounds from hadronic calorimeter and charged hodoscope hits as a function of COG distribution

Energy spectra and stability of result

 $K_S^0 \to \gamma \gamma$ Analysis

• Reject broken $K_S^0 \to \pi^0 \pi^0$ events: $-1m < z_{vertex} < 5m$ wrt collimator exit

 $2\pi^0$ background = $(0.8 \pm 0.2)\%$

• Reject hadronic background (no tracking): no in-time HAC cluster and cut on LKr cluster width

• Reject accidentals: $\Delta t_{\gamma\gamma} < 5$ ns and subtract extrapolated high P_t events

Hadronic and accidental background = $(0.8 \pm 0.3)\%$

• Reject Dalitz decays (analyzing magnet off–on for far-target data), $\pi^0 \rightarrow e^+e^-\gamma$: pair fails to separate or one e too soft; correct via simulation (effect twice as large for normalization channel)

$K_S^0 \to \gamma \gamma$ Result

- Roughly 20,000 $K^0_{L,S} \to \gamma \gamma$ events
- Non- $\gamma\gamma$ background ~ 2.5%

$K_S^0 \to \gamma \gamma$ Corrections and Uncertainties

Hadronic backgrounds and accidentals	$-2.1 \pm 0.7\%$
Broken $K_S \to \pi^0 \pi^0$	$-2.1\pm0.4\%$
Hadronic Background (far-target)	$0.9\pm0.4\%$
Dalitz Decay	$1.5\pm0.3\%$
χ^2 cut on π^0 masses	$\pm 0.3\%$
Trigger efficiency	$\pm 0.1\%$
$BR(K_S \to \pi^0 \pi^0)$	$\pm 0.9\%$
TOTAL	$-1.8 \pm 1.4\%$
Statistical Uncertainty (data)	$\pm 2.0\%$
Statistical Uncertainty (MC)	$\pm 0.6\%$

 $BR(K^0_S \to \gamma \gamma) = [2.78 \pm 0.06 (stat) \pm 0.02 (MC \ stat) \pm 0.04 (syst)] \times 10^{-6}$

- Compatible with previous results
- Differs by 30% from $\mathcal{O}(p^4)$ prediction \Rightarrow large $\mathcal{O}(p^6)$ contribution?

 $K_S^0 \to \pi^0 \gamma \gamma$

- Dominated by pion pole of $K_S^0 \to \pi^0 \pi^0$: restrict to $z \equiv m_{\gamma\gamma}^2/m_K^2 \ge 0.2$
- Theoretical prediction: $BR(K_S^0 \to \pi^0 \gamma \gamma) = 3.8 \times 10^{-8}$ (Ecker, Pich, De Rafael, 1987)
- No PDG limit
- 1999 high intensity K_S run: $3 \times 10^8 K_S$ decays

 $K_S^0 \to \pi^0 \gamma \gamma$ Analysis

Backgrounds

• Broken $K_S \to \pi^0 \pi^0 + \text{accidental}$

 2.1 ± 0.1 events (sideband extrapolation)

• Mismeasured π^0 mass from $K_S \to \pi^0 \pi^0$

 0.1 ± 0.1 event (simulation)

• $K_S \to \pi^0 \pi^0_{dalitz} \ K_S \to 3\pi^0$

< 0.1 event (simulation)

• $K_L \to \pi^0 \gamma \gamma$

0.1 event (irreducible, but calculable)

TOTAL BACKGROUND: 2.1 ± 0.2 events FOUND IN DATA: 2 events

PRELIMINARY LIMIT: $BR(K_S \to \pi^0 \gamma \gamma) < 4.4 \times 10^{-7} \text{ at } 90\% \text{ CL}$

Summary and Conclusions

• Final measurement of direct CP violation: <u>Physics Letters</u> **B**544 (2002) 97-112

2001:
$$\operatorname{Re}(\epsilon'/\epsilon) = [13.7 \pm 2.7(stat) \pm 1.5(syst)] \times 10^{-4}$$

Average: $\operatorname{Re}(\epsilon'/\epsilon) = [14.7 \pm 2.2] \times 10^{-4}$
World Average: $\operatorname{Re}(\epsilon'/\epsilon) = [16.7 \pm 2.3] \times 10^{-4}$

• $K_L^0 \to \pi^0 \gamma \gamma$: <u>Physics Letters</u> **B**536 (2002) 229-240

$$a_v = -0.46 \pm 0.03(stat) \pm 0.03(syst) \pm 0.02(theo)$$

$$\Rightarrow BR(K_L \to \pi^0 \gamma \gamma) = [1.36 \pm 0.03(stat) \pm 0.03(syst) \pm 0.03(norm)] \times 10^{-6}$$

$$\Rightarrow BR(K_L \to \pi^0 e^+ e^-)_{CP-C} = (4.7 \pm 2.2) \times 10^{-13}$$

• $K_L^0 \rightarrow \gamma \gamma$: <u>Physics Letters</u> **B**551 (2003) 7

$$\frac{\Gamma(K_L^0 \to \gamma \gamma)}{\Gamma(K_L^0 \to 3\pi^0)} = [2.81 \pm 0.01(stat) \pm 0.02(syst)] \times 10^{-3}$$

•
$$K_S^0 \rightarrow \gamma \gamma$$
: Physics Letters **B**551 (2003) 7
 $BR(K_S^0 \rightarrow \gamma \gamma) = [2.78 \pm 0.06(stat) \pm 0.02(MC \ stat) \pm 0.04(syst)] \times 10^{-6}$

•
$$K_S \to \pi^0 \gamma \gamma$$

$BR(K_S \to \pi^0 \gamma \gamma) < 4.4 \times 10^{-7} \text{ at } 90\% \text{ CL}$ (preliminary)

• 2002: High intensity K_S and neutral hyperon running; data being analyzed

- $K^0_S \rightarrow \pi^0 e^+ e^-$
- $-K^0_S \to \pi^0 \mu^+ \mu^-$
- Hyperon semileptonic decays: $|V_{us}|$
- Radiative hyperon decays: asymmetries and new modes
- 2003: Charged Kaon program