

NA48/1: K_s rare decays and Hyperons

Mauro Raggi Perugia University & INFN

Vemes Rencontres du Vietnam HANOI August 5-11 2004

On behalf of the NA48/1 Collaboration:

Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Warsaw, Wien

Outline

- ✓ The NA48/1 beam and detector
- ✓ $K_L \rightarrow \pi^0 l^+ l^-$ and CKM matrix
- ✓ First observation of: $K_s \rightarrow \pi^0 e^+ e^-$ and $K_s \rightarrow \pi^0 \mu^+ \mu^-$
- ✓ BR and decay asymmetry $\Xi^0 \rightarrow \Lambda \gamma$
- ✓ Preliminary information on Ξ^0 beta decay
- ✓ Conclusion

The NA48/1 K_S beam line

✓ SPS protons energy: 400 GeV
✓ Production angle: -4.2 mrad
✓ Duty cycle: 4.8 s/ 16.8 s
✓ Proton per pulse on target: 5.10¹⁰

The NA48/1 detector

NA48 data taking periods

NA48

No

NA48/1

NA48/2

- 1997 : ε'/ε run
- 1998 : ε'/ε run
- 1999 : ε'/ε run + 2 days of K_s
- 2000 : K_{I} only + K_{S} high intensity spectrometer
- 2001 : ϵ'/ϵ run + few days of K_s
- 2002 : K_s High intensity
- 2003 : K^{\pm} High intensity
- 2004 : K^{\pm} High intensity

Interest of K_L $\rightarrow \pi^0 l^+ l^-$

Unitarity triangle

 η can be measured using :

$$K_L \rightarrow \pi^0 l^+ l^-$$

 ρ can be measured using :

$$K^+ \rightarrow \pi^+ l^+ l^-$$

Direct CP violating component is sensitive to $Im(\lambda_t)$:

$$\operatorname{Im}(\lambda_t) = \eta A^2 \lambda^5 \qquad \qquad \lambda_t = V_{ts}^* V_{td}$$

Interest of $K_S \rightarrow \pi^0 e^+ e^-$

 $BR(K_s \to \pi^0 e^+ e^-) = 5.2 \cdot 10^{-9} a_s^2$

Measuring a_s from BR(K_S) you can estimate the BR(K_L)
The value of the BR(K_L) can give constraints on Im(λ_t)

 a_s is one of the 2 form factors

$K_S \rightarrow \pi^0 e^+ e^-$: a blind analysis

- ✓ Signal region $|M_{\pi 0 rec} M_{\pi 0}| < 2.5 \sigma_{M \pi 0} * |M_{K rec} M_{K}| < 2.5 \sigma_{MK}$
- ✓ Control region $|M_{\pi 0 rec} M_{\pi 0}| < 6\sigma_{M\pi 0} * |M_{Krec} M_K| < 6\sigma_{MK}$

✓ Large number of possible background were studied:

- Single Kaon or Hyperon decay
- Fragment of 2 decay coinciding in time

✓ Cuts fixed using MC and data after blinding signal and control region

✓ Control region unmasked to check MC background estimate

✓ Signal region unmasked to discover signal events

$K_S \rightarrow \pi^0 e^+ e^-$ physical background

Rejected background

- Main BG: $K_S \rightarrow \pi^0 \pi^0_D$ - Cut on $M_{ee} > 165$ MeV applied - $\Xi^0 \rightarrow \Lambda(p\pi^-)\pi^0$
 - Cut on momentum asymmetry

Residual background (MC)

BG source	# ev. sig region
$K_L \rightarrow e^+ e^- \gamma \gamma$	$0.08^{+0.03}_{-0.02}$
Accidental	$0.07^{+0.07}_{-0.03}$
Total	$0.15^{+0.10}_{-0.04}$

 $BR(K_S \rightarrow \pi^0 e^+ e^-)$

M. Raggi NA48 Collaboration

$K_S \rightarrow \pi^0 \mu^+ \mu^-$ physical background

Hyperons background:

 $\Xi^0 \rightarrow \Lambda(p\pi^-)\pi^0$

Kaon background:

 $K_L \rightarrow \pi^0 \pi^+ \pi^-$ with π decay in flight $K_L \rightarrow \mu^+ \mu^+ \gamma \gamma$ Accidental background

BR(K_S $\rightarrow \pi^0 \mu^+ \mu^-)$

$$BR(K_s \to \pi^0 \mu^+ \mu^-) = (2.9^{+1.5}_{-1.2}(stat.) \pm 0.2_{syst}) \cdot 10^{-9}$$

a_s and K_L estimates

 \checkmark a_s can be extracted using both decays:

 $BR(K_{s} \to \pi^{0}e^{+}e^{-}) = 5.2 \cdot 10^{-9}a_{s}^{2} \Longrightarrow |a_{s}| = 1.06^{+0.26}_{-0.21} + 0.07$ $BR(K_{s} \to \pi^{0}\mu^{+}\mu^{-}) = 1.2 \cdot 10^{-9}a_{s}^{2} \Longrightarrow |a_{s}| = 1.55^{+0.38}_{-0.32} + 0.05$

- ✓ The results are compatible taking into account experimental errors
- ✓ Using $|a_s|$ and current value of Im (λ_t) $BR(K_L \rightarrow \pi^0 e^+ e^-)_{CPV} = (17_{IND} \pm 9_{INT} + 5_{DIR}) \cdot 10^{-12}$ $BR(K_L \rightarrow \pi^0 \mu^+ \mu^-)_{CPV} = (9_{IND} \pm 3_{INT} + 1_{DIR}) \cdot 10^{-12}$ [1]

$\Xi^0 \rightarrow \Lambda \gamma$ decay asymmetry

- Decay asymmetry in weak radiative hyperons decay was predicted to be small.
- ✓ Discovery of large decay asymmetry α in weak radiative $\Sigma^+ \rightarrow p\gamma$
- ✓ New SU(3) breaking models were developed:
 - Pole models based on χPT approach:
 - $\geq \alpha < 0$ all weak radiative hyperons decays
 - VMD & quark model:

 $\geq \alpha > 0$ only for $\Xi^0 \rightarrow \Lambda \gamma$

✓ A measurements of α in $\Xi^0 \rightarrow \Lambda \gamma$ can distinguish between different models

$\alpha(\Xi^0 \rightarrow \Lambda \gamma)$ measurements

 Θ_{Λ} angle between incoming Ξ^0 and outgoing p in the Λ rest frame

$$\frac{dN}{d\cos\Theta_{\Lambda}} = N_0(1 - \alpha(\Lambda \to p\pi^-)\alpha(\Xi^0 \to \Lambda\gamma)\cos\Theta_{\Lambda})$$

First observation of a negative decay asymmetry for Ξ^0 decay

$$\alpha = -0.78 \pm 0.18_{stat} \pm 0.06_{syst}$$

M. Raggi NA48 Collaboration

2 days of 1999 data Signal: 730 events

Background: 58.2 ± 7.8 events

Systematic error dominated by asymmetry measurements

Almost a factor 100 more statistic is expected in 2002 data C Analysis is in progress ...

Ξ^0 beta decay: $\Xi^0 \rightarrow \Sigma^+ e^- \overline{\nu}_e$

$$\Xi^{0} \to \Sigma^{+} e^{-} \overline{\nu}_{e}$$
$$\downarrow p \pi^{0}$$

World largest sample of $\Xi^0 \beta$ decay Physics goals:

- V_{us} measurements using BR

studies of SU(3) breaking in the form factors

Conclusions

✓ 2 new rare K decays observed:

- $K_{S} \rightarrow \pi^{0} e^{+} e^{-} \qquad BR(K_{S} \rightarrow \pi^{0} e^{+} e^{-}) = (5.8^{+2.8}_{-2.3}(stat.) \pm 0.3_{syst} \pm 0.8_{theory}) \cdot 10^{-9}$
- $\mathbf{K}_{S} \to \pi^{0} \mu^{+} \mu^{-} BR(K_{S} \to \pi^{0} \mu^{+} \mu^{-}) = (2.9^{+1.5}_{-1.2}(stat.) \pm 0.2_{syst}) \cdot 10^{-9}$
- The form factor a_S has been extracted and an estimate of K_L BR was given
- ✓ The $\Xi^0 \rightarrow \Lambda \gamma$ decay asymmetry and BR have been measured on 1999 data.
- ✓ World largest sample of Ξ^0 beta decay has been collected and BR ratio measurements will come soon