Hyperon physics in the experiment NA48/I at CERN

Mauro Piccini

Università degli studi di Perugia INFN - sezione di Perugia

June, 28 - 2004

On behalf of the NA48/I Collaboration

Cagliari Cambridge CERN Chicago Dubna Edinburgh Ferrara Firenze Mainz Northwestern Perugia Pisa Saclay Siegen Torino Warsaw Wien

Outline

- The NA48 detector
- The Beam (2002 Configuration)
- Recent results from NA48 on Hyperon Physics:
 - Decay asymmetry on $\Xi^0 \to \Lambda \gamma$
 - BR of the decay $\Xi^0 \to \Lambda \gamma$
- Status and perspectives on the study of Ξ^0 beta decays
 - V_{us} extraction
 - Form factor studies
- Other on-going analyses for Hyperon studies in NA48/I

The NA48 detector

Muon veto sytem Hadron calorimeter Liquid krypton calorimeter Hodoscope Drift chamber 4 Anti counter 7 Helium tank Drift chamber 3 Magnet Drift chamber 2 Anti counter 6 Drift chamber 1 Kevlar window

magn. spectrometer and scintillator hodoscope $(p_T^{kick} \simeq 265 \ MeV/c)$ $\frac{\sigma(p)}{p} \simeq 0.5\% \oplus 0.009\% \ p \ (GeV/c)$ $\sigma_{x,y}^{hit} \simeq 90 \ \mu m$ $\sigma_{x,y}^{vtx} \simeq 2 \ mm$ $\sigma_t \simeq 200 \ ps$

NEUTRAL DECAYS:

Quasi homogeneous Liquid Krypton electromagnetic calorimeter (LKr) $\frac{\sigma(E)}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{0.10}{E} \oplus 0.5\%$ (E in GeV) $\sigma_{m_{\pi^0}} \simeq 1 \ MeV/c^2$

 $\sigma_{x,y} < 1.3 mm$

 $\sigma_t < 300 \ ps \ above \ 20 \ GeV$

The NA48 beam

DETAIL OF THE K_S TARGET STATION (2002 conf.)

SPS proton momentum400Duty Cycle4.8Protons per pulse on target $5 \cdot 1$ Production angle-4.2

400 *GeV/c* **4.8** *s*/**16.8** *s* 5 ⋅ 10¹⁰

-4.2 mrad

Data taking periods

Data taking periods

The hyperon trigger in 1999

- ★ The K_S target is also a source of hyperons
- * The main difficulty for the acquisition of $\frac{1}{2}$ events from hyperon decays was the rejection of K_S decay into two charged pions

HYPERON TRIGGER

Cut against $K_S \rightarrow \pi^+\pi^-$ using mass and momentum ratio (downscaling=5)

Asymmetry on $\Xi^0 \to \Lambda \gamma$ from 1999 data

In 1999 High Intensity K_S run (48 h of data taking) 730 $\Xi^0 \rightarrow \Lambda \gamma$ events were recorded with a background of 58.2 \pm 7.8 events.

The asymmetry was measured using the angle Θ_{Λ} between the Ξ_0 and the out-going proton (coming from the decay $\Lambda \rightarrow p\pi^-$) in the Λ rest frame

The MC and the measurement technique were first tested measuring the decay asymmetry in the non-leptonic decay $\Xi^0\to\Lambda\pi^0$

Asymmetry on $\Xi^0 \to \Lambda \gamma$ (cont.)

We compare the data with an isotropic MC distribution.

 $\alpha(\Xi^0 \to \Lambda \gamma) =$

Effect of background on the asymmetry was measured in the mass sidebands

First clear evidence for negative asymmetry on this Ξ^0 radiative decay

The main systematic uncertainty comes from background subtraction

140

(a)

Branching Ratio for $\Xi^0 \to \Lambda \gamma$

 $BR(\Xi^0 \to \Lambda \gamma) = (1.16 \pm 0.05_{stat} \pm 0.06_{syst}) \times 10^{-3}$

The systematic uncertainty is dominated by the error on the asymmetry measurement

Data taking periods

The $\Xi^0 \beta$ -decay:

- In 2002 NA48 has collected the largest world sample of events in this channel
- ★ The $\Xi^0 \rightarrow \Sigma^+ e^- \overline{\nu_e}$ doesn't suffer for the background from the corresponding 2 body decay ($\Xi^0 \rightarrow \Sigma^+ \pi^-$)

Good perspectives for:

- ★ Form factors measurement ⇒ study of SU(3) breaking
- ★ BR measurement
 - $\Rightarrow V_{us}$ extraction (test of V_{CKM} unitarity)
- More information from:
 - $\star \Xi^0 \to \Sigma^+ \mu^- \overline{\nu}_{\mu}$
 - * $\overline{\Xi}^0 \beta$ -decay ($\overline{\Xi}^0$ are unpolarized)

V_{us}

The sine of Cabibbo's angle V_{us} can be extracted from the BR measurement Open item: The unitarity of CKM matrix

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \simeq |V_{ud}|^2 + |V_{us}|^2 = 1$$

in fact $|V_{ub}|^2 \sim 10^{-5}$

Measured V_{us} values (PDG 2002):

 $(V_{us})_{ke3} = 0.2196 \pm 0.0023 \Rightarrow V_{ud}^U = 0.9756 \pm 0.0005$ $(V_{us})_{Hyp} = 0.2250 \pm 0.0027 \Rightarrow V_{ud}^U = 0.9744 \pm 0.0007$

Measured V_{ud} values (PDG 2002):

 $(V_{ud})_{n \to pe^{-}\overline{\nu}} = 0.9728 \pm 0.0012$ $(V_{ud})_{nuclei} = 0.9740 \pm 0.0005$

New results on V_{us} from E865, KLOE and KTEV

Form factors

Within of SU(3) validity the form factors for $\Xi^0 \beta$ -decay are equal to the form factors for neutron β -decay. Some theories explaining SU(3) breaking, give significant differences for the axial-vector form factor g1. Current status:

$$\left(\frac{g_1}{f_1}\right)_{n \to pe^-\overline{\nu}} = 1.267 \pm 0.0035$$

$$\left(\frac{g_1}{f_1}\right)_{\Xi^0 \to \Sigma^+ e^- \overline{\nu}} = 1.32 \pm_{0.17}^{0.21} \pm 0.05 \qquad (KTEV)$$

No evidence for SU(3) breaking

Hyperon semileptonic trigger on 2002

In 1999 run the trigger rate was dominated by the $\Lambda \to p \; \pi^-$

In order to recover the downscaling factor 5 with respect to 1999 run, in 2002 we split the hyperon trigger into 2 new triggers:

Hyperon semiletonic trigger:

- Cut against $K \to \pi^+ \pi^-$
- Cut against $\Lambda \to p\pi^-$

Cut on the momentum ratio

Hyperon radiative trigger:

Cut against $K \to \pi^+ \pi^-$

 $\Lambda \to p \; \pi^- \; {\rm asked}$

Cut against low p_t events (considering only charged particles)

Detection

2002 DATA

Data collected during 89 days in 2002 ~ 9000 events in the signal region (background $\sim 3\%$)

Electron spectrum

In addition presence of electron is required

Then Ξ^0 vertex is reconstructed

Remark on the sample statistics

- The trigger efficiency is the critical point of the analysis
- \Rightarrow The main source of systematic uncertainty
- (Principal contribution comes from the cut against Λ)
- In fact we decide to measure the effect of trigger efficiency on data, using a downscaled minimum bias trigger (control trigger).
- But we are limited by the statistics on this control sample
- Final cuts are chosen in order to minimize the overall uncertainty
- \Rightarrow The statistics shown might be different from the final one

 $\Xi^0 \to \Sigma^+ \mu^- \overline{\nu_\mu}$

In 2002 run we also collect \sim 100 events for Ξ^0 muonic decay

Other studies on Ξ^0 **physics**

- On 2002 many other analyses are in progress
 - Ξ^0 lifetime
 - $\Xi^0 \to \Lambda \gamma$ (enlarged stat.)
- ${\sc sc s}$ $\Xi^0 \to \Sigma^0 \gamma$, $\Sigma^0 \to \Lambda \gamma$
- $\Xi^0 \to \Lambda e^+ e^-$
- Limit on $\Xi^0 \rightarrow p\pi^-$ ($\Delta S=2$)
- Already published results on hyperon physics from NA48:
- Measurement of the $\Xi^0 \rightarrow \Lambda \gamma$ decay asymmetry and branching fraction. (Phys.Lett.B584:251-259,2004)
- Precision measurement of the Ξ^0 mass and the branching ratios of the decays $\Xi^0 \to \Lambda \gamma$ and $\Xi^0 \to \Sigma^0 \gamma$ (Eur.Phys.J.C12:69-76,2000)

Conclusions

- The NA48 collaboration has recently published new results on Ξ^0 physics:
 - Measurement of the decay asymmetry in $\Xi^0 \to \Lambda \gamma$ \Rightarrow First clear evidence for a negative value of the asymmetry
 - Measurement of the Branching ratio for $\Xi^0 \to \Lambda \gamma$
- The studies on the \(\mathcal{\Xi}^0\) semileptonic decays are well advanced, soon new results on:
 - Branching ratio measurement and V_{us} extraction
 - Form factors
- The NA48 collaboration is also active on the study of other Ξ^0 's decay channel

Stay tuned

Effect of cut against Λ **on signal sample**

