Results from the NA48 Experiment on Rare Neutral Kaon Decays

Andrew Maier for the NA48 Collaboration

Ę

EPS Budapest 12-18 July 2001

Outline

- The NA48 Setup
- $K_L \rightarrow \pi^0 \gamma \gamma$ (χPT)
- $K_S \rightarrow \pi^0 e^+ e^-$ (CP Violation, χPT)
- $K_s \rightarrow \gamma \gamma$ (χPT)
- Other results
- Conclusions and Outlook

The NA48 Experiment (1)

- NA48 aims to measure the direct CP violation parameter ϵ'/ϵ .
- NA48 also carries out studies of rare decays of neutral kaons
- It uses 2 simultaneous and almost collinear K_L and K_S beams
- In 1999 data from a 2 days high intensity (200x nominal) K_s only beam was taken.

The NA48 Experiment (2)

The NA48 Detector

K_L -> π⁰γγ (1)

Motivation:

- At one loop χPT (O(p⁴)) the decay rate is finite, but only gives 1/3 of the measured rate.
- Calculations of O(p⁶) including vector meson exchange (VMD) reproduce the measured rate and allows a tail at low Mγγ.
- The VMD contribution is parameterised by a_v, which has to be determined experimentally.

K_L -> π⁰γγ (2)

Data Selection:

• Events are similar in signature (4 γ) to K_L-> $\pi^0\pi^0$ (norm. channel) -> most systematic uncertainties cancel.

Background: $2\pi^0$, $3\pi^0$

- The background from $2\pi^0$ is rejected with invariant mass cuts
- Background from 3π⁰ with missing or overlapping γ are rejected with combinatorial cuts -> Background results in wrong K vertex while giving a good π⁰ vertex
- Additional cuts on the shower width of the cluster

 $K_{L} \rightarrow \pi^{0}\gamma\gamma$ (3)

 $(1.36 \pm 0.03_{(stat)} \pm 0.03_{(syst)} \pm 0.03_{(norm)}) \times 10^{-6}$

• $a_V = -0.46 \pm 0.03_{(stat)} \pm 0.03_{(syst)} \pm 0.02_{(theo)}$.

0 GeV<m34<0.135GeV 0.135 GeV<m34<0.24GeV 0.24 GeV<m34<0.26GeV

EPS, Budapest 13. July 2001

Results:

•BR(K₁ $\rightarrow \pi^0 \gamma \gamma) =$

A. Maier - Universität Siegen

N. of events

N. of events

N. of events

8

$K_s \rightarrow \pi^0 e^+ e^-(1)$

Motivation:

- $K_s \rightarrow \pi^0 e^+ e^-$ is dominated by long-distance dynamics through one-photon exchange (K $\rightarrow \pi \gamma^*$)
- •The decay measures the indirect CP violating components of BR(K_L -> $\pi^0 e^+ e^-$) × 10¹² =15.3a_s² -6.8a_s Im(λ_t)×10⁴+2.8(Im(λ_t)×10⁴)², with Im(λ_t) =V^{*}_{ts}V_{td} from the CKM elements.
- Theoretical expectation:

 $BR(\mathbf{K_s} \rightarrow \pi^0 \mathbf{e^+ e^-}) = 5.2 \times 10^{-9} a_s^2$, with a_s^2 of O(1)

• KL $\rightarrow \pi^0 e^+ e^-$ is interesting because it contains a direct CP violating component

•The current best value for $BR(K_s \rightarrow \pi^0 e^+ e^-) < 1.1 \times 10^{-6}$ (NA31)

Data Selection:

Select events with 2 tracks with 0.9<E/p<1.1 and at least 4 good clusters in the calorimeter with a mass around the K⁰ mass. $M_{e\gamma} - M_{\pi 0} <30 \text{ MeV} - \text{removes } \pi^0 \pi^0_D \text{ and } \pi^0_D \pi^0_D$ $M_{ee} > 165 \text{ MeV/c}^2 - \text{removes } \pi^0 \pi^0_D \text{ background}$

EPS, Budapest 13. July 2001

A. Maier - Universität Siegen

10

$K_{s} \rightarrow \pi^{0}e^{+}e^{-}$ (3)

Results:

The final selection contains no event. Using $K_S \rightarrow \pi^0 \pi^0_D$ as normalization channel taken with the same trigger an upper limit is given:

$BR(K_{S} \rightarrow \pi^{0}e^{+}e^{-}) < 1.4 \times 10^{-7} (90\% \text{ CL})$

This includes a 7% systematic error. It improves the current best measurement by a factor of 10.

A paper has been submitted Phys Lett B (CERN Preprint EP2001-042)

Outlook:

In 2002 a dedicated K_S and hyperon run is foreseen. We aim at collecting 6×10^{10} K_S thus - assuming an acceptance of 5% - reaching a SES of 3×10^{-10} .

K_S -> γγ (1)

Motivation:

- This decay is an important test for χPT, because of its finite and unambiguous result.
- It has no short distance contributions.
- From theory: $BR(K_s \rightarrow \gamma \gamma) = (2.3 \pm 0.2) \times 10^{-6}$.

Data sample:

- 1999 high intensity K_s run with dedicated trigger ($\varepsilon_{trigger}$ >99%)
- Since K_s and K_L are both produced at the target is is important to subtract the $K_L \rightarrow \gamma\gamma$ events.
- The flux of the K_s is measured via $K_s \rightarrow \pi^0 \pi^0$ (also normalisation channel)
- The K_L flux is measured also via $K_L = -3\pi^0$.

K_S -> γγ (2)

Event Selection:

• Search for 2 clusters in the calorimeter

Background rejection:

- The background $\Lambda ->n\pi^0$ is estimated from COG tails and is suppressed by cutting on the energy of the hadron calorimeter
- $K_L \rightarrow \gamma \gamma$ is estimated from the K_L flux
- The background from K_S -> π⁰π⁰ with 2 missing photons is shifted by at least 9 m -> a virtually background free region of about 5m

 $K_{\rm S} \rightarrow \gamma \gamma (3)$

Results:

149±21 K_S –> $\gamma\gamma$ candidates

 $BR(K_{S} \rightarrow \gamma \gamma) = 2.58 \pm 0.36_{(stat)} \pm 0.22_{(syst)})X10^{-6}$

 $R = \Gamma(K_{S} ->\gamma\gamma)/\Gamma(K_{L} ->\gamma\gamma) = 2.53 \pm 0.35_{(stat)} \pm 0.22_{(syst)}$

Published in Phys Lett B. 49 (2000) 29

A. Maier - Universität Siegen

Other Results(1)

$K_L \rightarrow \pi^+\pi^-e^+e^-$

• 1300 events found resulting in a preliminary result:

 $BR(K_{L} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}) = (3.1 \pm 0.1(stat) \pm 0.2(syst)) \times 10^{-7}$

• For the angular distribution of the $sin\phi cos\phi$ distribution:

$$A_{L} = (13.9 \pm 2.7_{(stat)} \pm 2.0_{(syst)})\%$$

K_s –>π⁺π**e**⁺**e**⁻ – (Phys. Lett. B496 (2000) 137)

• 56 events found in 1998 data.

 $BR(KS \to \pi^+\pi^-e^+e^-) = (4.5 \pm 0.7_{(stat)} \pm 0.4_{(syst)}) \times 10^{-5}$

- From the high intensity K_S run in 99 we have a preliminary update of the BR(K_S -> $\pi^+\pi^-e^+e^-$)=(4.3 ± 0.2_(stat) ± 0.3_(syst)) × 10⁻⁵
- `and a preliminary measurement of the asymmetry

$$A_{\rm S} = (-0.2 \pm 3.4_{\rm (stat)} \pm 1.4_{\rm (syst)})$$
 %.

Conclusions and Outlook

• NA48 provides interesting physics in the neutral sector of the kaon sector for chiral perturbation theory and CP violation

- NA48 has a new result on the decay $K_L \rightarrow \pi^0 \gamma \gamma$:
- $\mathsf{BR}(\mathsf{K_L} \to \pi^0 \gamma \gamma) = (1.36 \pm 0.5) \times 10^{-6}$
- $a_V = -0.46 \pm 0.05.$

• NA48 has improved the limit for the BR of KS $\rightarrow \pi^0 e^+e^-$ by a factor 10: BR(K_S $\rightarrow \pi^0 e^+e^-$) < 1.4 × 10⁻⁷ (90% CL)

• In 2001 the ϵ'/ϵ program will be completed and additional rare decay data will be taken.

• In 2002 a dedicated high intensity K_s run will aim at delivering at delivering competitive results in the domain of neutral Ks and hyperon physics.

• The K_S run will be followed by a dedicated charged kaon run (2003)

KL -> π⁰γγ (4)

Upper limit for the B amplitude

$$\frac{\partial^2 \Gamma}{\partial x \partial y} = \frac{m_K}{2^9 \pi^3} \left[z^2 \cdot |A + B|^2 + \left(y^2 - y_{max}^2 \right)^2 \cdot |B|^2 \right]$$

$$z = \frac{m_{\gamma\gamma}^2}{m_K^2} \qquad \qquad y = \frac{E_1 - E_2}{m_K}$$

In the region of 30 MeV/c² < $m_{\gamma\gamma}$ < 110 MeV/c² and 0 < |y| < 0.2

- An amplitude gives a negligible contribution
- The acceptance is almost flat
- -> model independent upper limit for the KL -> $\pi^0\gamma\gamma$ decay rate

BR($\pi^{0}\gamma\gamma$)[30 MeV/c² < mgg < 110MeV/c², 0 < |y| < 0.2]<0.6×10⁻⁸ (preliminary)

Other Results(2)

K_L -> e⁺e⁻e⁺e⁻ - (hep-ph/0006040)

139 events found in 1999 data BR(K_L -> $e^+e^-e^+e^-$) = (3.67 ± 0.32(stat) ± 0.23(syst) ± 0.08(norm)) ×10⁻⁸

K_L –> μ+μ-e+e-

19 events found in the 1999 data

Ę