First observation of the decay $K_S \rightarrow \pi^0 e^+ e^-$

Mitesh Patel University of Cambridge

CERN seminar

10th June 2003

On behalf of the NA48/1 Experiment :

Cambridge, Chicago, CERN, Dubna, Edinburgh Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Warsaw, Wien

Overview

- Physics Motivation
- The NA48/1 beamline and detector in 2002
- $K_S \to \pi^0 e^+ e^-$ selection
- Background Studies
- Preliminary result and conclusions

CP violation in rare kaon decays

A unitarity triangle in the kaon system :

 $K_L \to \pi^0 \nu \bar{\nu}$ and $K^+ \to \pi^+ \nu \bar{\nu}$ are theoretically clean

Theoretical error 2-5 %

Together determine unitarity triangle

Extremely difficult experiments

 $K_L \rightarrow \pi^0 e^+ e^-$ experimentally more constrained (limited by background)

$K_L \to \pi^0 e^+ e^-$

The decay $K_L \to \pi^0 e^+ e^-$ has three components :

• CP conserving NA48 measurement $BR(K_L \to \pi^0 \gamma \gamma)$: $\to BR(K_L \to \pi^0 e^+ e^-)_{CP \ cons} = 0.47^{+0.22}_{-0.18} \times 10^{-12}$ [PL B536 229]

• direct CP violating Proportional to η or $\mathcal{Im}(\lambda_t)$ $\mathcal{Im}(\lambda_t) = \eta A^2 \lambda^5$ $\lambda_t = V_{ts}^* V_{td}$ $\rightarrow BR(K_L \rightarrow \pi^0 e^+ e^-)_{dir} \sim few \times 10^{-12}$

• indirect CP violating

 $\rightarrow BR(K_L \rightarrow \pi^0 e^+ e^-)_{ind} = |\epsilon|^2 (\frac{\tau_L}{\tau_S}) BR(K_S \rightarrow \pi^0 e^+ e^-)$

 $BR(K_S \to \pi^0 e^+ e^-)$ and $BR(K_L \to \pi^0 \gamma \gamma)$ determine whether it will be possible to extract η from a measurement of $BR(K_L \to \pi^0 e^+ e^-)$

$$K_L \rightarrow \pi^0 e^+ e^-$$
 and $K_S \rightarrow \pi^0 e^+ e^-$

Theory
$$BR(K_S \to \pi^0 e^+ e^-) = 5 - 50 \times 10^{-10}$$

(Ecker, Pich, de Rafael [NP B291 692])

Direct/indirect CP violating components of $K_L \to \pi^0 e^+ e^-$ interfere : $BR(K_L \to \pi^0 e^+ e^-)_{CPV} = 1 \times 10^{-12} \left(15.3 a_s^2 \pm 6.8 \frac{\mathcal{I}m(\lambda_t)}{10^{-4}} |a_s| + 2.8 \left(\frac{\mathcal{I}m(\lambda_t)}{10^{-4}} \right)^2 \right)$ $BR(K_S \to \pi^0 e^+ e^-) = 5 \times 10^{-9} |a_s|^2 \Rightarrow \text{determines } |a_s|$

(D'Ambrosio, Ecker, Isidori, Portoles [JHEP 08 (1998) 004])

Current limits: $BR(K_L \to \pi^0 e^+ e^-) < 5.1 \times 10^{-10} \text{ (KTeV, [PRL 86 397])}$ 2 events with background of 1.1 event $BR(K_S \to \pi^0 e^+ e^-) < 1.4 \times 10^{-7} \text{ (NA48, [PL B514 253])}$ 2-days test run in 1999

The NA48 simultaneous K_S and K_L beams

Used for $\operatorname{Re}(\varepsilon'/\varepsilon)$ measurement until 2001

2002 data-taking : K_S target only

2002 Beamline

 5×10^{10} ppp from SPS in 4.8s spill

 $400\,{\rm GeV/c}$ protons onto $40\,{\rm cm}$ Beryllium target, $4.2\,{\rm mrad}$ production angle

Photon converter downstream of target and a sweeping magnet after the defining collimator

Intensity on target increased by factor ~ 1000 compared to running conditions used for the measurement of ε'/ε

 $\sim 4 \times 10^{10} K_S$ decays in 89 days with energy 40-240 GeV and within 2.5 K_S lifetimes from the final collimator

(proposal: $3 \times 10^{10} K_S$ in 105 days; 8% loss due to duty cycle but factor 2 gain in readout)

NA48 Detector

• Detector performance

• 50k events read out per burst : 40 MHz read-out ±100 ns

> LKr electromagnetic calorimeter read-out upgraded New drift chamber read-out : removal of dead time due to read-out overflow

Active Level III trigger reduced data volume $120\,\mathrm{TB} \rightarrow 40\,\mathrm{TB}$

Trigger

The trigger used to select $\pi^0 e^+ e^-$ candidates required :

- Energy deposited in LKr > 30 GeV
- Energy centre of gravity < 15 cm from beam axis at LKr
- Proper decay time < 6 K_S lifetimes from the end of the final collimator
- Number of hits in DCH1 compatible with at least one track

Trigger efficiency measured using $\pi^0 \pi_D^0$ events : 99.0%

Analysis Strategy

Rare decay analysis strategy \Rightarrow understand and minimise all possible background processes, without cutting away the signal

"Blind analysis procedure" \rightarrow signal and control regions masked :

Signal region : $2.5\sigma_{m_K} \times 2.5\sigma_{m_{\pi^0}}$

Control region : $6.0\sigma_{m_K} \times 6.0\sigma_{m_{\pi^0}}$

Study backgrounds using the data and a Monte Carlo simulation

Fix analysis cuts on the basis of these studies

Unmask control region \rightarrow final background estimate

Unmask signal region \rightarrow result

$K_S \to \pi^0 e^+ e^-$ signal selection

Select decays within 2.5 K_S lifetimes of final collimator and with energy $40 < E_{kaon} < 240 \,\text{GeV}$:

- 4 clusters in calorimeter within 3 ns of the average time
- 2 tracks, one +, one forming a good vertex
- Charged vertex downstream of collimator region
- Electron id : $0.95 < \frac{E}{p} < 1.05$
- No signal from muon detector
- Energy centre of gravity (cog) < 6 cm from beam axis at LKr
- No energy deposited in hadron calorimeter
- Remove events with additional clusters/tracks in-time
- $m_{ee\gamma\gamma} = m_{kaon}$ assuming $\gamma\gamma$ originate from charged vertex $2.5\sigma_{m_K}$ cut used ($\sigma_{m_K} = 4.7 \,\text{MeV}$)
- $m_{\gamma\gamma} = m_{\pi^0}$ assuming $\gamma\gamma$ originate from vertex reconstructed imposing m_K $2.5\sigma_{m_{\pi^0}}$ cut used ($\sigma_{m_{\pi^0}} = 1.0 \,\mathrm{MeV}$)

Backgrounds to the search for $K_S \to \pi^0 e^+ e^-$

$$\begin{array}{l} K_S \text{ decays} \\ K_S \to \pi^0 \pi_{Dalitz}^0 \\ K_S \to \pi^0 \pi_D^0 + \text{conversion(s)} \\ K_S \to \pi^0 \pi_{DalitzDalitz}^0 \\ K_S \to \pi^0 \pi^0 (e^+ e^-) \\ K_S \to \pi_{Dalitz}^0 \pi_{Dalitz}^0 \\ \end{array}$$

$$\begin{split} & K_L \text{ decays} \\ & K_L \to \pi^0 \pi^+ \pi^- \\ & K_L \to \pi^0 \pi^\pm e^\mp \nu \\ & K_L \to ee\gamma + \text{ bremsstrahlung} \\ & K_L \to ee\gamma\gamma \end{split}$$

$$\begin{aligned} \Xi^{0} & \text{decays} \\ \Xi^{0} &\to \Lambda(p\pi^{-})\pi^{0} \\ \Xi^{0} &\to \Lambda(pe^{-}\nu)\pi^{0} \\ \Xi^{0} &\to \Sigma^{+}(p\pi^{0})e^{-}\nu \end{aligned}$$

Overlapping fragments of two decays

from the same proton interaction $p \rightarrow \phi(K_S K_L)$ from different proton interactions

 $p \rightarrow K_S \quad p \rightarrow K_L$

Background from $K_S \to \pi^0 \pi^0_{Dalitz}$

 $3 \times 10^8 K_S \to \pi^0 \pi^0_{Dalitz} (e^+ e^- \gamma)$ decays in $0 < \frac{c\tau}{c\tau_S} < 2.5$

Rejected using :

extra $\gamma \quad \Leftrightarrow m_K \text{ cut } / \text{ additional activity cut}$ $\theta_{e^+e^-} \text{ small} \Leftrightarrow \text{track separation at 1st drift chamber>2 cm}$ $m_{ee} < m_{\pi^0} \quad \Leftrightarrow \text{require } \pi^0 e^+ e^- \text{ candidates have } m_{ee} > 0.165 \,\text{GeV/c}^2$

Background from $K_S \to \pi^0 \pi_D^0$ (cont'd)

 m_{ee} resolution studied extensively with both data and Monte Carlo

• 'regular' $\pi^0 \pi^0_D$ events :

$$K_S \longrightarrow \begin{cases} \pi^0 \longrightarrow \begin{cases} \gamma \\ \gamma \\ \pi_D^0 \longrightarrow \begin{cases} \varphi^{\gamma} \\ e \\ e \end{cases}$$

• $\pi^0 \pi_D^0$ decay + conversion in detector

$$K_{S} \longrightarrow \begin{cases} \pi^{0} \longrightarrow \begin{cases} \gamma \\ \gamma \\ \\ \pi_{D}^{0} \longrightarrow \begin{cases} \gamma^{\text{conversion}} \\ e^{+-} \\ e^{+-} \\ \vdots \\ \kappa_{s}^{-+} \\ \text{(lost)} \end{cases}} \end{cases} \overset{(\text{lost})}{}$$

• Analogous processes *e.g.* $\pi^0 \pi^0_{DD}$, $\pi^0(\gamma \gamma) \pi^0(\gamma_{conv}(e e) \gamma_{conv}(e e))$

Background from $K_S \to \pi^0 \pi_D^0$: Data/MC in low m_{ee} region

Events with m_{ee} mis-measured : $m_{ee} > m_{\pi^0} \rightarrow m_{ee\gamma\gamma} > m_K$

Apply conservative cut $m_{ee} > 0.165 \,\text{GeV}$

Background from $K_S \to \pi^0 \pi_D^0$: Same sign data

Events with $m_{ee} \sim m_{\pi^0}$ contain $e^+e^-e^+e^-$ Check m_{ee} distribution of $\pi^0e^+e^+$ and $\pi^0e^-e^-$ events :

- worse m_{ee} resolution
- have high m_{ee}
- \rightarrow same sign events used as a check of m_{ee} tail before freezing analysis cuts and unmasking control and signal regions

Background from $K_S \to \pi_D^0 \pi_D^0$

 $2 \times 10^6 K_S \to \pi_D^0(e^+e^-\gamma) \pi_D^0(e^+e^-\gamma)$ decays in $0 < \frac{c\tau}{c\tau_S} < 2.5$

 e^+ and e^- lost from different π_D^0 decays can have $m_{ee} > m_{\pi^0}$ Suppressed by requirement $m_{\gamma\gamma} \sim m_{\pi^0}$

Background from $K_S \to \pi_D^0 \pi_D^0$ (cont'd)

Reject events with $(m_{e\gamma}, m_{e\gamma}) < 0.165 \,\mathrm{GeV/c^2}$

No events found in the signal region in 30×2002 statistics 1 event found in control region Background summary so far ...

Backgrounds from K_S decays \rightarrow additional cuts : $m_{ee} > 0.165 \,\text{GeV}$ $(m_{e\gamma}, m_{e\gamma}) > 0.165 \,\text{GeV/c}^2$ $\Rightarrow K_S \rightarrow \pi_D^0 \pi_D^0$ contributes 0.007 event in $\pm 2.5\sigma$ signal region

Now consider backgrounds from K_L decays :

$$\begin{split} K_L & \text{decays} \\ K_L \to \pi^0 \pi^+ \pi^- \\ K_L \to \pi^0 \pi^\pm e^\mp \nu \\ K_L \to ee\gamma + \text{bremsstrahlung} \\ K_L \to ee\gamma\gamma \end{split}$$

Backgrounds from K_L decays

 $\sim 5 \times 10^8 K_L$ decay in the $0 < \frac{c\tau}{c\tau_S} < 2.5$ fiducial region

 K_L decay primarily to final states with π^{\pm} rather than e^{\pm} \rightarrow need efficiency of electron id : 0.95< E/p <1.05

Pions can charge exchange in calorimeter : $\pi^- p \rightarrow \pi^0 n$ \rightarrow pions mis-identified as electrons

Select $K_L \to \pi^0 \pi^+ \pi^-$ decays from 2001 data : Measure mis-identification probability $\to \sim 10^{-2}$ Study kinematic rejection using events from data

Starting from $5 \times 10^8 K_L$ decays we expect : $6 \times 10^3 \pi^0 \pi^+ \pi^-$ decays $2 \times 10^6 \pi^0 \pi^{\pm} e^{\mp} \nu$ decays with two charged particles that look like e^+e^-

Backgrounds from $K_L \to \pi^0 \pi^+ \pi^-$ and $K_L \to \pi^0 \pi^\pm e^\mp \nu$

To study rejection from kinematics, selected $\pi^0 \pi^+ \pi^-$ and $\pi^0 \pi^\pm e^\mp \nu$ from 2001 data :

 200×2002 statistics

 60×2002 statistics

No events were found in the signal region in either channel

Background from $K_L \rightarrow ee\gamma\gamma$

Expect 300 $K_L \to ee\gamma\gamma$ decays in $0 < \frac{c\tau}{c\tau_S} < 2.5$ $(BR = 6 \times 10^{-7})$ Strongly suppressed by $m_{ee} > 0.165 \,\text{GeV}$ requirement and $m_{\gamma\gamma} = m_{\pi^0} \text{ cut } (\sigma_{m_{\pi^0}} = 1 \,\text{MeV} \text{ in } K_S \to \pi^0 e^+ e^-)$

 $K_L \rightarrow ee\gamma\gamma$ candidates selected from 2001 data (K_L beam) used to estimate background (10 × number of K_L decays in 2002 data)

Extrapolate from low $m_{\gamma\gamma}$ region to signal region (assuming flat in $m_{\gamma\gamma}$)

Background summary so far ...

Backgrounds from K_S decays :

 $\Rightarrow K_S \rightarrow \pi_D^0 \pi_D^0$ contributes 0.007 event in $\pm 2.5\sigma$ signal region

Backgrounds from K_L decays :

Mis-identification $\pi^{\pm} \Leftrightarrow e^{\pm}$, kinematic rejection studied with data

 $\Rightarrow K_L \rightarrow ee\gamma\gamma$ contributes 0.075 event in $\pm 2.5\sigma$ signal region

Now consider backgrounds from Ξ^0 decays :

 $\begin{aligned} \Xi^{0} & \text{decays} \\ \Xi^{0} &\to \Lambda(p\pi^{-})\pi^{0} \\ \Xi^{0} &\to \Lambda(pe^{-}\nu)\pi^{0} \\ \Xi^{0} &\to \Sigma^{+}(p\pi^{0})e^{-}\nu \end{aligned}$

Backgrounds from Ξ^0 decays

Expect $\sim 2 \times 10^9 \Xi^0 \rightarrow \Lambda(p\pi^-)\pi^0$ decays in $0 < \frac{c\tau}{c\tau_S} < 2.5$

Probability of proton mis-identification as e^+ measured from 2001 data using Λ decays $\rightarrow \sim 10^{-4}$

Expect $2 \times 10^3 \Xi^0 \to \Lambda(p\pi^-)\pi^0$ decays in 2002 data with two charged particles that look like e^+e^-

Backgrounds from Ξ^0 decays (cont'd)

 $\Xi^0 \to \Lambda(p\pi^-)\pi^0$ acceptance $\sim 2 \% \Rightarrow$ background already small Exploit momentum asymmetry in Ξ^0 and Λ decay - additional cut on :

$$ASP_{(\pi^0,\pm)} = \frac{p_{\pi^0} - (p_+ + p_-)}{p_{\pi^0} + (p_+ + p_-)}$$
 and $ASP_{(+,-)} = \frac{p_+ - p_-}{p_+ + p_-}$

reduces background to negligible level

 $\Xi^0 \to \Lambda(pe^-\nu)\pi^0, \ \Xi^0 \to \Sigma^+(p\pi^0)e^-\nu$ decays rejected in same way

Background summary so far ...

Backgrounds from K_S decays :

 $\Rightarrow K_S \rightarrow \pi_D^0 \pi_D^0$ contributes 0.007 event in $\pm 2.5\sigma$ signal region

Backgrounds from K_L decays :

 $\Rightarrow K_L \rightarrow ee\gamma\gamma$ contributes 0.075 event in $\pm 2.5\sigma$ signal region

Backgrounds from $\Xi^0 \text{ decays} \rightarrow \text{ additional cut}$: Cut on momentum asymmetry in Ξ^0 and Λ decay \Rightarrow Negligible contribution from Ξ^0 decays

Now consider backgrounds from overlapping fragments of two decays :

from different proton interactions $p \rightarrow K_S \quad p \rightarrow K_L$

Background from overlapping fragments of two decays

Two p interactions accidentally close together in time look like one event : p_1 + Be $\rightarrow K_S$ +X and p_2 + Be $\rightarrow K_L$ +X Rate measured using events with two fragments well separated in time Control region : time between fragments Δt : $3 < \Delta t < 50 \text{ ns}$ Signal region : $\Delta t < 3 \text{ ns}$

Extrapolate from out-of-time control region to in-time signal region

Background from overlapping fragments of two decays (cont'd)

Major component:

 $ee(\pi^{\pm}e^{\mp}\nu) + \gamma\gamma(\pi^{0}\pi^{0}(\pi^{0}))$

confirmed by relaxing E/p and $c\tau$

Background from overlapping fragments of two decays (cont'd)

No events in 2.5σ signal region in $(3 < \Delta t < 50 \,\mathrm{ns})$ time sidebands

Toy MC \Rightarrow (m_K, m_{π^0}) distribution of $(\pi^{\pm} e^{\mp} \nu) + (\pi^0 \pi^0(\pi^0))$

Events in 6σ control region extrapolated into signal region using shape from toy MC

Linear extrapolation from $(3 < \Delta t < 50 \text{ ns})$ time sidebands to $(\Delta t < 3 \text{ ns})$ in-time signal region

Total background

Significant contributions to the background in the signal region :

Source	control region	signal region
$K_S \to \pi_D^0 \pi_D^0$	0.03	0.007
$K_L \to e e \gamma \gamma$	0.11	0.075
$(\pi^{\pm}e^{\mp}\nu) + (\pi^{0}\pi^{0}(\pi^{0}))$	0.19	0.069
Total background	$0.33\substack{+0.18 \\ -0.11}$	$0.15\substack{+0.05 \\ -0.04}$

Toward opening the box ...

Unmasking the control region

Finally we can open the box !

- 7 events found in the signal region : Negligible probability that all 7 events are consistent with background $(\sim 10^{-10})$
 - \rightarrow presence of signal well established

No events found in equivalent same sign distributions

	control region	signal region
DATA	0	7
Total background	$0.33\substack{+0.18 \\ -0.11}$	$0.15\substack{+0.05 \\ -0.04}$

Have checked that there is no accumulation of background close to the signal region by relaxing cuts :

$K_S \to \pi^0 e^+ e^- events$

1 background event seen $17\sigma_{m_K}$, $20\sigma_{m_{\gamma\gamma}}$ from the signal region

Monte Carlo mass distribution : solid line

$K_S \to \pi^0 e^+ e^- events \ (cont'd)$

Branching ratio measurement - Acceptance

Model independent acceptance, α :

 α computed in bins of m_{ee}

take weighted mean according to distribution of 7 $K_S \rightarrow \pi^0 e^+ e^$ events found

 $\rightarrow \alpha(m_{ee} > 0.165 \,\mathrm{GeV}) = 6.6\%$

Shape given by vector matrix element [JHEP 08 (1998) 004]

Branching ratio measurement - Flux

 K_S flux measured using $K_S \to \pi^0 \pi_D^0$ decays : topologically similar to $K_S \to \pi^0 e^+ e^$ taken by the same trigger

Cross-checked using $K_S \to \pi^0 \pi^0$ decays

- \rightarrow Difference found between the two fluxes : 18.8%
- Half the discrepancy is understood (common to $\pi^0 e^+ e^-$, $\pi^0 \pi_D^0$): inefficiencies due to the drift chamber read-out (at start of run) accidental losses
- To account for the remaining unexplained difference (10%): K_S flux measured with $\pi^0 \pi_D^0$ decays increased by 5% systematic error of 5% assigned

Branching ratio measurement

 $7~{\rm events}$ observed with a background $0.15~{\rm event}$

- Acceptance $(m_{ee} > 0.165 \,\text{GeV}) = 6.6 \,\%$
- Taking $\pi^0 \pi_D^0$ flux

Preliminary result :

 $BR(K_S \to \pi^0 e^+ e^-)_{(m_{ee} > 0.165 \text{ GeV})} =$ $(3.0^{+1.5}_{-1.2}(stat) \pm 0.2(syst)) \times 10^{-9}$

Extrapolating to all m_{ee}

Acceptance calculated using vector matrix element (D'Ambrosio, Ecker, Isidori, Portoles [JHEP 08 (1998) 004])

Form factor : $w(z) = (1 + \frac{b}{a}z)$ where $z = m_{ee}^2/m_K^2$, and b/a = 1.12 (from fitting $K^+ \to \pi^+ e^+ e^-$ including the $\pi\pi$ loop [PRL 83 (1999) 4482])

Extrapolation to full acceptance done using w(z) = 1

Preliminary results

Measured branching ratio :

 $BR(K_S \to \pi^0 e^+ e^-)_{(m_{ee} > 0.165 \text{ GeV})} = (3.0^{+1.5}_{-1.2}(stat) \pm 0.2(syst)) \times 10^{-9}$

Extrapolating to all m_{ee} (*) :

 $BR(K_S \to \pi^0 e^+ e^-) = (5.8^{+2.8}_{-2.3}(stat) \pm 0.3(syst) \pm 0.8(theor)) \times 10^{-9}$

 χPT prediction : $BR(K_S \to \pi^0 e^+ e^-) = 5 \times 10^{-9} |a_s|^2 \to$ Preliminary measurement of $|a_s|$:

 $|a_{s}| = 1.08^{+0.26}_{-0.21}$

* Matrix element from [JHEP 08 (1998) 004] used with form factor w(z) = 1

Implications for $K_L \to \pi^0 e^+ e^-$

Measurement of $|a_s|$ allows BR $(K_L \to \pi^0 e^+ e^-)$ to be predicted as a function of $\mathcal{I}m(\lambda_t)$ to within a sign ambiguity :

$$BR(K_L \to \pi^0 e^+ e^-)_{CPV} = \left(15.3a_s^2 \pm 6.8\frac{\mathcal{I}m(\lambda_t)}{10^{-4}}|a_s| + 2.8\left(\frac{\mathcal{I}m(\lambda_t)}{10^{-4}}\right)^2\right) \times 10^{-12}$$

indirect interference direct
$$BR(K_L \to \pi^0 e^+ e^-)_{CPV} = (17.7 \pm 9.5 + 4.7) \times 10^{-12}$$

(Global fit $\Rightarrow \mathcal{I}m(\lambda_t) = (1.30 \pm 0.12) \times 10^{-4}$ Kettell, Landsberg, Nguyen [hep-ph/0212321])

$$BR(K_L \to \pi^0 e^+ e^-)_{CP \ cons} = (0.47^{+0.22}_{-0.18}) \times 10^{-12}$$

Implications for $K_L \to \pi^0 e^+ e^-$ (cont'd)

 $\Rightarrow BR(K_L \to \pi^0 e^+ e^-) = 1 - 4 \times 10^{-11}$

Conclusions

 $4.2 \times 10^{10} K_S$ decays collected in the fiducial region during 89 days

7 $K_S \rightarrow \pi^0 e^+ e^-$ decays found in region $m_{ee} > 0.165$ GeV with 0.15 event background \Rightarrow well established evidence for signal

Preliminary results :

Measured branching ratio :

 $BR(K_S \to \pi^0 e^+ e^-)_{(m_{ee} > 0.165 \text{ GeV})} = (3.0^{+1.5}_{-1.2}(stat) \pm 0.2(syst)) \times 10^{-9}$

Extrapolating to all m_{ee} :

 $BR(K_S \to \pi^0 e^+ e^-) = (5.8^{+2.8}_{-2.3}(stat) \pm 0.3(syst) \pm 0.8(theor)) \times 10^{-9}$

 $|a_s| = 1.08^{+0.26}_{-0.21}$

Background from overlapping fragments of two decays (cont'd)

Two fragments from a single proton interaction \rightarrow always close together in time

Resonances $\rightarrow K+(K,\Lambda)$ e.g. $\phi(K_SK_L)$

Estimated number of ϕ by searching for $K_S(\pi^+\pi^-)K_L(\pi^0\pi^0\pi^0)$ events in 2002 data

- No evidence for in-time peak above accidental background \rightarrow assumed all decays found in-time from a ϕ (upper limit)
- Computed background from all partially reconstructed $K_S + K_L$ decays modes

Also searched for in-time sources of $K_S + K_S$, $K_S + \Lambda$, $K_L + \Lambda$

Total contribution to background negligible

Checks

Checks (cont'd)

 $K_S \to \pi^0 e^+ e^- \text{ events (cont'd)}$

π^0 reconstruction

• Vertex position along beam line found by imposing the Kaon mass

$$D = Z_{LKr} - Z_{decay} = \sqrt{\sum (E_i E_j \times r_{ij})^2} / M_K$$

 Z_{vtx} resolution ≈ 50 cm

 \Rightarrow Correlation between Z_{vtx} and energy scale