NA48 results on neutral kaon rare decays and prospects for charged kaon physics

Riccardo Fantechi

INFN - Sezione di Pisa On behalf of the NA48 collaboration Meson 2002 - Krakow May 27th, 2002

Outline

- 1997-99 data taking for ϵ'/ϵ measurement
 - Measure of η mass and $~K_{S}$ lifetime
 - Rare decay studies
 - Hyperon decay measurements
- NA48/1: high intensity K_s
 - Physics motivations
 - Beam and detector upgrade
 - Results from phase 1
- NA48/2: charged kaon physics
 - Motivations
 - Beam and detector upgrade
 - Results from a test run in 2001

The NA48 beams

Meson 2002 - Krakow

The NA48 detector

LKr Calorimeter:

s(E)/E @ 3.2%/vE Å 100MeV/E Å 0.42%

Spectrometer:

p_⊤ kick ~250 MeV/c s(P)/P @ 0.48% Å 0.009 P[GeV/c]%

$$s_{M}(p^{0}p^{0}) \sim s_{M}(p^{+}p^{-}) \sim 2.5 \text{ MeV}$$

Rare kaon decays with ϵ'/ϵ data

- Good resolutions in charged and neutral sectors
- Flexible trigger for neutral decays \Rightarrow allows to select decays in any number of γ
- Flexible trigger for charged decays ⇒ allows to select events with more than 2 charged tracks
- Enough data acquisition bandwidth to accept a fraction of not ϵ'/ϵ triggers
- Intense K_L beam

Data taken for ϵ'/ϵ

- 1997-99 ε'/ε data taking
 - 450 GeV/c proton momentum
 - 2.4s/14.4s duty cycle
 - $3*10^{*7}$ ppp on K_S target $\Rightarrow ~3*10^2$ K_S
 - $1.5*10^{*12}$ ppp on K_L target $\Rightarrow -2*10^7$ K_L
 - $6.5*10*^7$ K_s/year \Rightarrow SES ~ $1.5*10^{-7}$
 - $3.6*10^{*10}$ K_L/year \Rightarrow SES ~ $3*10^{-10}$

1997-2000

- Special runs with π^-/K^- beam along the K_L beam axis to study the performance of the LKr calorimeter with π^0/η produced by charge exchange in a polyethylene target

K^0 and η masses : the method

- Data collected in 2000, K_L only and η going in $3\pi^0$
- For each pion d_{\dots}

$$d_{vertex} = \frac{d_{12}}{M_{p^{\circ}}} \sqrt{E_1} E_2$$

• For the parent particle

$$M = \frac{1}{\langle d_{vertex} \rangle} \sqrt{\sum_{ij,i < j} E_i} E_j d_{ij}$$

- \Rightarrow Measure $M_{\eta,K}/M_{\pi 0}$
 - $3\pi^0$ mode is background free
 - Indipendent from the energy scale
 - Only sensitive to residual non-linearities in energy or position

K^{0} and η masses : the method

- High statistics in K^0 decays allows systematic checks to validate the measurement of the η mass
- Systematic errors are due to
 - Non linearity in energy measurement \Rightarrow reduced using symmetric decays: 0.7 < (E γ /<E γ >) < 1.3
 - Non uniformity in the calorimeter response
 - Energy leakage from one shower to another
 - Non gaussian tails in the energy response mainly due to hadron photoproduction
- The total systematic error is $\pm 41 \text{ keV/c}^2$ for the η mass and $\pm 31 \text{ keV/c}^2$ for the K⁰ mass

K^{0} and η masses : results

K_s lifetime measurement

- Method (introduced by NA31)
 - Use the same data sample as for ϵ'/ϵ analysis
 - Decay region is defined in 0.5 < τ/τ_s < 3.5
 - Cut at 0.5 τ_{s} to avoid detector resolution effects
 - Analysis in 5 GeV energy bins and 0.1 $\tau_{\!_S}$ lifetime bins
 - Fit the ratio N_L/N_S with the proper function of $\tau_{S,L'}\,\Delta_{m'}$ $\eta,\,\phi$ and dilutions in bins of E and $c\tau_s$
 - Acceptances cancel at first order in the ratio and a small correction from Montecarlo is needed
 - Background from K_{L} decays (10-3 level) is subtracted as in ϵ'/ϵ analysis

K_s lifetime measurement

Statistics (in	10 ⁶ events
$K_L \rightarrow \pi^+ \pi^-$	12.2
$K_{S} \rightarrow \pi^{0}\pi^{0}$	13.2
$K_L \rightarrow \pi^+ \pi^-$	2.8
$K_{S} \rightarrow \pi^{0}\pi^{0}$	3.1

	τ _s /10 ⁻¹⁰ s	χ/dof
π⁺π⁻ - 1998	0.89578 ± 0.00109	628.2/573
π ⁰ π ⁰ - 1998	0.89606 ± 0.00247	551.0/573
π⁺π⁻ - 1999	0.89598 ±0.00072	601.2/573
π ⁰ π ⁰ - 1999	0.89635 ± 0.00167	543.5/573

May 27th, 2002

Meson 2002 - Krakow

R. Fantechi

K_s lifetime measurement

Systematics dominated by fit method and beam geometry uncertainties Combined result (CERN-EP/2002-028 - hep-ex/0205008) $\tau_{s} = (0.89598 \pm 0.00048_{st} \pm 0.00043_{sy} \pm 0.00027_{MCst})^*10^{-10}s$

May 27th, 2002

Meson 2002 - Krakow

$K_1 \rightarrow \pi^0 \gamma \gamma$ - Physics

Motivation •

- At one loop χ PT (O(p⁴)) the decay rate is finite, but only gives 1/3 of the measured rate
- Calculations of O(p⁶) including vector meson exchange reproduce the measured rate and allows a tail at low $M\gamma\gamma$
- VMD contribution parametrized by a_v , to be measured, which determines the CPC amplitude to $K_{\scriptscriptstyle \rm I}\,\to\pi^0\,e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$

May 27th, 2002

$K_L \to \pi^0 \, \gamma \, \gamma$ - Analysis

- Data selection
 - Signature similar to $K_L \rightarrow \pi^0 \pi^0$ (normalization channel)
 - Most systematic uncertainties cancel
 - Both channels collected with the same trigger
- Background
 - Background from 2 π^0 rejected using invariant mass cuts
 - One pair should be within 3 MeV from the pion mass
 - The other should be outside the 110 MeV-160 Mev window
 - Transverse momentum of the lowest energy unpaired photon should be > 40 MeV/c
 - Remaining background estimated from ${\rm K_s} \to \pi^0 \pi^0$ tails

${\rm K_L} \rightarrow \pi^0 \, \gamma \, \gamma$ - Analysis

• Background

- Background from $3\pi^0$ with missing or overlapping photons are rejected with combinatorial cuts
 - Background gives wrong K vertex with a good π^0 vertex
- Additional cuts on the shower width of the cluster
- Good separation using a variable z_{max} set up as the maximum of the reconstructed z of various combinations of photons

May 27th, 2002

$K_L \to \pi^0 \, \gamma \, \gamma$ - Analysis

~2500 candidates in the signal region (132 < m₁₂ < 138 MeV)

 $0 < m_{34} < 0.135 \quad 0.135 < m_{34} < 0.24 \quad 0.24 < m_{34} < 0.26$

Meson 2002 - Krakow

R. Fantechi

$K_L \rightarrow \pi^0 \, \gamma \, \gamma$ - Results

KTeV

• Fitting a_v one obtains:

BR (K_L $\rightarrow \pi^0 \gamma \gamma$) = (1.68± 0.10)

$$a_v = -0.46 \pm 0.03_{st} \pm 0.03_{sy} \pm 0.02_{th}$$
 $a_v = -0.72 \pm 0.08_{sy}$

• Using the fitted a_v the branching ratio is:

BR (K_L $\rightarrow \pi^0 \gamma \gamma$) = (1.36 ± 0.03_{st} ± 0.03_{sy} ± 0.03_{norm})*10⁻⁶

- The systematics of both results are limited by background evaluation and acceptance calculation
- The value of a_v implies a negligible CP conserving contribution to $K_L \to \pi^0 \; e^+ e^-$

BR
$$(K_L \rightarrow \pi^0 e^+e^-)_{CPC} = (4.7 \pm 2.2)^*10^{-13}$$

CERN-EP 2002-030 hep-ex/0205010 submitted to Phys. Lett. B

May 27th, 2002

Meson 2002 - Krakow

R. Fantechi

Summary of other analyses

- $K_L \rightarrow \pi^+\pi^-e^+e^-$ CP Violation
 - Asymmetry in the angle between the planes of $\pi^+\pi^-$ / e⁺e⁻
 - A = $13.9 \pm 2.7_{st} \pm 2.7_{sy}$ % (KTeV: A = $3.6 \pm 2.5_{st} \pm 1.2_{sy}$ %)
- $K_S \rightarrow \pi^+\pi^-e^+e^-$
 - First observation and prel. BR = $(4.5 \pm 0.2_{st} \pm 0.3_{sy})*10^{-5}$
- $K_S \rightarrow \pi^0 e^+ e^-$
 - Upper limit for the BR: $BR < 1.4 \times 10^{-7}$
- Hyperons
 - $M(\Xi^0) = 1314.82 \pm 0.06_{st} \pm 0.2_{sy} MeV/c^2$
 - BR($\Xi^{0} \rightarrow \Lambda \gamma$) = (1.9±0.2)*10⁻³ BR($\Xi^{0} \rightarrow \Sigma^{0} \gamma$) = (3.7±0.5)*10⁻³
 - 60 events of $\Xi^0 \rightarrow \Sigma^+ e^- v$

NA48/1: High Intensity K_s Physics motivations

- $K_S \rightarrow \pi^0 e^+ e^-$, $K_S \rightarrow \pi^0 \mu^+ \mu^-$
 - Bound indirect CP Violation in the corresponding $\rm K_L$ decays
- Search for CP Violation in K_S decays

- $K_S \rightarrow 3\pi^0$, $K_S \rightarrow \pi^0 \pi^+ \pi^-$

- Test of Chiral Perturbation Theory
 - $K_S \rightarrow \gamma \gamma$, $K_S \rightarrow \pi^0 \gamma \gamma$, $K_S \rightarrow \pi^0 \pi^0 \gamma \gamma$
- Semileptonic and radiative neutral hyperon decays
 - Improve NA48 results on $\Xi^0 {\rightarrow} \Sigma^+ e^- \nu$, $\Xi^0 {\rightarrow} \Sigma^+ \mu^- \nu$, $\Xi^0 {\rightarrow} \Sigma^0 \gamma$, $\Xi^0 {\rightarrow} \Lambda \gamma$
 - Put an upper limit to BR ($\Xi^0 \rightarrow p\pi^-$) (double beta decay)
- •

First step towards NA48/1

- 1999 High Intensity K_s run (40 hours)
 - No K_L beam
 - $6^{*}10^{9}$ ppp on K_s target (x200)
 - $2.3*10^8$ K_S decays for 60 < E_K < 190 GeV
 - SES ~ $4*10^{-8}$ with 10% acceptance
 - 40 hours \equiv 3-4 years of ϵ'/ϵ operation
- 2000 run No drift chambers in the spectrometer
 - 400 GeV/c proton momentum
 - Modified production angle, same proton intensity
 - Modified duty cycle (3.2s/14.4s)
 - Far target run (K_L) with magnetic field on
 - Near target run (HIK_s) without magnetic field
 - 10^{10} K_s decays collected in ~40 days

$$K_S \rightarrow \gamma \gamma$$

- $K_S \rightarrow \gamma \gamma$ is interesting because it is calculable in xPT with no counter-terms and it is sensitive to loops
 - Theoretical prediction: $BR(K_S \rightarrow \gamma \gamma) = (2.1 \pm 0.2)^* 10^{-6}$
 - Result from NA31: BR($K_S \rightarrow \gamma \gamma$)=(2.4 ± 0.9)*10⁻⁶
- Data from 1999 HIKs run with dedicated trigger
 - 7.5*10⁶ decays after x100 downscaling
 - Acceptances: 22% for $K_S^{} \to 2\pi^0,\,49\%$ for $K_S^{} \to \gamma\gamma$
 - Flux measurement using $K_L^{} \!\rightarrow\! 3\pi^0$ and $K_s^{} \!\rightarrow\! 2\pi^0$
 - Use $K_S \rightarrow 2\pi^0$ as normalisation channel
 - Subtract K_L events extrapolating at the production target where K_L and K_S fluxes are equal

$$K_S \rightarrow \gamma \gamma$$

- $K_S \to \gamma \gamma$ is interesting because it is calculable in χPT with no counter-terms and it is sensitive to loops
 - Theoretical prediction: $BR(K_S \rightarrow \gamma \gamma) = (2.1 \pm 0.2)^* 10^{-6}$
 - Result from NA31: $BR(K_S \rightarrow \gamma \gamma) = (2.4 \pm 0.9)^* 10^{-6}$
- Published result from 1999 HIKs run with dedicated trigger
 - BR ($K_S \rightarrow \gamma \gamma$) = (2.58 ± 0.36_{st} ± 0.22_{sy})*10⁻⁶
 - Phys. Lett. B493 (2000) 29
- New result based on 2000 HIKs run
 - Use data from 2000 far target run
 - Normalise to $K_S \rightarrow \pi^0 \pi^0$

$K_S \rightarrow \gamma \, \gamma$ – Background

- $K_s \rightarrow \pi^0 \pi^0$ minimized using a 5 m fiducial region after the K_s collimator. There decays with two lost γ have a maximum invariant mass of 458 MeV and the reconstructed vertex cannot be less than 9 m. Reduction to 5 m is due to the effect of overlapping showers.
- Hadronic interactions in the collimator evaluated from high COG tails and suppressed by Ehac and shower width cut
- Accidental $\gamma\gamma$ pairs eliminated with a cut on cluster time difference

- $K_L \to \gamma\gamma$ irreducible \to 1.5 times the $K_S \to \gamma\,\gamma$ in the decay volume.
 - Use $K_L \rightarrow 3\pi^0$ to evaluate K_L flux
 - Use 2000 far target run to measure $\Gamma(K_{L} \rightarrow \gamma \gamma) / \Gamma(K_{L} \rightarrow 3\pi^{0})$
 - Need 5 data samples:
 - Far target: gg, 2p⁰, 3p⁰
 - Near target: gg, 3p⁰
- Dalitz decays K, $\pi^{\scriptscriptstyle 0} \to ee\gamma$ mainly due to closed $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$ pairs subtracted using MC

$${\rm K}_{\rm S} \to \gamma \, \gamma$$

- Measurement of $\Gamma(K_L \rightarrow \gamma \gamma) / \Gamma(K_L \rightarrow 3\pi^0)$
 - 2000 far target run: similar detector conditions as in the near target one \Rightarrow detector systematics cancel.
 - Choose the same decay volume as for $K_S \to \gamma \gamma \Rightarrow$ acceptance almost cancels
 - Background handling similar to $K_S \to \gamma \, \gamma$
 - Result:

$$\Gamma(K_L \rightarrow \gamma \gamma) / \Gamma(K_L \rightarrow 3\pi^0) = (2.81 \pm 0.01_{st} \pm 0.02_{sy})^* 10^{-3}$$

PDG value = $(2.77 \pm 0.08) \times 10^{-3}$

$K_S \rightarrow \gamma \gamma$ - Result

Global systematic correction

-1.8 ± 1.4 %

Total number of $K_x \rightarrow \gamma \gamma$ 19916 Statistical error ± 2.0 % Statistical error on MC ± 0.6 %

Preliminary result:

 $BR(Ks \rightarrow \gamma \gamma) = (2.78 \pm 0.06_{st} \pm 0.02_{MCst} \pm 0.06_{sy})^* 10^{-6}$

Meson 2002 - Krakow

$K_S \rightarrow \gamma \gamma \text{-} Result$

•The NA48 result is compatible with the previous measurements

-It shows 30% difference wrt O(p⁴) χPT predictions

•There is an indication for a large O(p⁶) contribution

May 27th, 2002

NA48/1 – Phase 2

- Basic motivation is to achieve a SES of 2-3*10⁻¹⁰ for the decay $K_S \rightarrow \pi^0 e^+ e^-$
 - Scheduled to run in 2002
 - Asked for 10¹⁰ ppp 3*10¹⁰ decays in 105 days with 5.2s/16.8s duty cycle
 - Expected SES of 6*10⁻¹⁰ for 5% acceptance*efficiency with 1999 setup
 - Improvement to the beam and detector will improve SES
 - Expected ~7 events for the improved conditions
- SPS in 2002 will deliver protons to NA48 only for 84 days \rightarrow improved efficiency/few more protons

Beam modifications

- Upgraded target station
 - Accidental activity measured in 1999 is due to electromagnetic showers generated in the collimator
 - Add a magnetic field in the collimator to sweep out charged particles
 - Add a platinum photon converter downstream of the KS target
 - Accidental reduction of a factor ~2 \rightarrow increase proton intensity to 2*10¹⁰ ppp

Beam/detector modifications

- Upgraded target station
 - Accidental activity measured in 1999 is due to electromagnetic showers generated in the collimator
 - Add a magnetic field in the collimator to sweep out charged particles
 - Add a platinum photon converter downstream of the K_s target
- New Drift Chamber readout
 - Remove overflow losses present in the current readout
 - 30 % overflow in 1999 data
- Upgrade of the LKr readout system
 - New readout mode to gain a factor 2 in the number of events
 - Online PC farm bandwidth upgraded to 1GB/burst

Global increase in SES up to 2*10⁻¹⁰

May 27th, 2002

Meson 2002 - Krakow

Beam modifications

Detector upgrade

- New Drift Chamber readout
 - Remove overflow losses present in the current readout
 - 30 % overflow in 1999 data
- Upgrade of the LKr readout system
 - New format to pack 2 events in one block
 - Factor ~2 gained in the number of events read
 - Online PC farm bandwidth upgraded to 1GB/burst
- Improve on SES by a factor at least 3
 - 1999 configuration: 6* 10⁻¹⁰
 - 2002 configuration: 2* 10⁻¹⁰

NA48/2 – Motivation

- Measurement of direct CP violation in the decays of charged kaons
 - $K^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}, K^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}, K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$
- Study of quark condensate in $\rm K_{e4}$ decay mode measuring the scattering length $\rm a_0^0$
- Other rare decays of charged kaons
 - $K^{\pm} \rightarrow \pi^{\pm}(n\gamma)$, $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma$, $K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-}$

Direct CP violation in K[±] decays

- K[±] decay matrix
 - $|M(u,v)|^2 \mu 1 + g^*u + h^*u^2 + k^*v^2$
 - u,v Dalitz plot variables $u = (s_3 s_0)/m_{\pi^2}, v = (s_1 s_2)/m_{\pi^2},$ where s_3 refers to the odd pion
 - Direct CP violation $\Rightarrow A_g \equiv (g^+ g^-)/(g^+ + g^-) \neq 0$
 - Theory predicts values for A_q between 10⁻⁶ and 10⁻⁴
 - $\Delta(A_g) \approx 10^{-4} \approx 3.7^* \sqrt{(1/N_+ + 1/N_-)}$
 - Limited mainly by statistics $\Rightarrow 10^{10}$ decays for $\Delta(A_g) \approx 10^{-4}$

Meson 2002 - Krakow

Direct CP violation in K[±] decays

- Data taking strategy
 - Measure

$$R(u) = \frac{\int dv |M^{+}(u,v)|^{2}}{\int dv |M^{-}(u,v)|^{2}} \approx 1 + u * (g^{+} - g^{-})$$

- Data will be taken under the following conditions:
 - Simultaneous K⁺ and K⁻ beams in the same fiducial volume
 - Alternate the spectrometer field to equalise acceptances even if the detector has localised imperfections
 - Ratios are measured in momentum bins and with opposite B polarities. Final average over P and B is independent of acceptances
- Simulation shows that total systematic error is $\leq 5*10^{-5}$
- Precision limited by statistics

Beam parameters

- Simultaneous positive and negative beams
 - Focused beams
 - Narrow band energy 60 GeV
 - 10¹² ppp with duty cycle 5.2s/16.8s and 400 GeV energy
 - Kaon flux per pulse: $3.1*10^{6}$ K⁺ and $1.8*10^{6}$ K⁻
 - Kaon decays/year: $7.3*10^9$ K⁺ and $4.4*10^9$ K⁻ with 120 days at 50% efficiency \rightarrow likely to be less
 - Statistical error on $A_q \le 10^{-4}$
 - Statistical error on $a_0^0 < 0.01$

Simultaneous focused K⁺ K⁻ beams

19-05-2001, 107

Simultaneous K⁺ and K⁻ beams - Focussed

May 27th, 2002

Meson 2002 - Krakow

R. Fantechi

KAon BEam Spectrometer

- Purpose
 - Resolve ambiguity in K_{e4} reconstruction
 - Reconstruction of K[±] decays where one pion escaped detection
- Requirements
 - $\delta p/p \approx 1\%$
 - $\theta_{x,y} \leq 2mrad$
 - Expected rate 40 Mhz

- $\delta t \approx 1 n s$

-
$$\Delta X/X_0 \approx 10^{-3}$$

-
$$\delta_{X,Y} \approx 0.25 \text{ mm}$$

- Solution
 - MicroMegas gas chambers with 60 mm drift and 1mm strips, with two coordinate measurement, placed in achromat 2 and downstream

Test run in 2001 - Motivation

- Few hours of data taking in 2001, using both positive and negative π/K beam with average energy of 60 Gev
- Data taking optimization
 - Optimize pretrigger logic
 - Check rates in the detectors
 - Optimize L2 trigger processor algorithms
 - No restrictions found for rates and trigger inefficiencies
- Practice with data analysis

Test run in 2001 – Results

Dalitz plot for accepted K decays **Reconstructed K mass** 10[€] Entries 2101663 0.4939 Mean Dalitz variable V RMS 0.2486E-02 10⁵ 101 10³ 10^{2} 10 Dalitz variable U 0.5 10.4 0.48 Asymmetry in bins of energy 0.2 A_{g} 0.15 Average asymmetry obtained: (-2±7)*10⁻³ 0.1 0.05 C C Best direct measurement (BNL) is $(-7 \pm 5)*10^{-3}$ -0.05-o.1 -0.15 R. Fantechi Meson 2002 - Krakow -0.2⁴⁶ 52 58 64 70 76 82 88 94 Kaon energy, GeV

Conclusion

- Data taken during ϵ'/ϵ runs have been used for rare decay studies
 - Many channels analyzed, work still in progress
 - Some of them published, but all used for theses
- High intensity K_s proposal already operational
 - Neutral only run in 2000
 - New result on $K_S \rightarrow \gamma \gamma$ announced today
 - Analysis on K $_S \to \pi^0 \gamma \gamma$ and Ks $\to 3\pi^0$ is progressing
 - 2002 data taking for $K_S \rightarrow \pi^0 e^+e^-$ will start in 20 days
- Charged kaon proposal
 - Ready for 2003
 - No problems spotted in a test run done in 2001